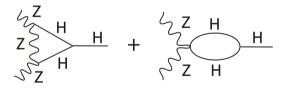
Higgs Self-Coupling at ILC.

Julie Munch Torndal

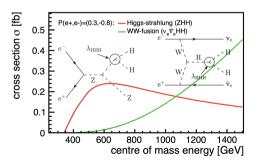
ILC-Japan Physics Working Group February 22, 2023



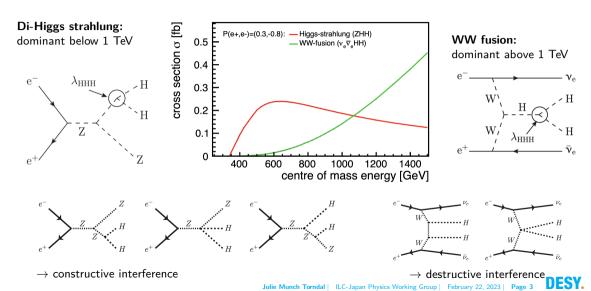
Higgs self-coupling

Indirect access:

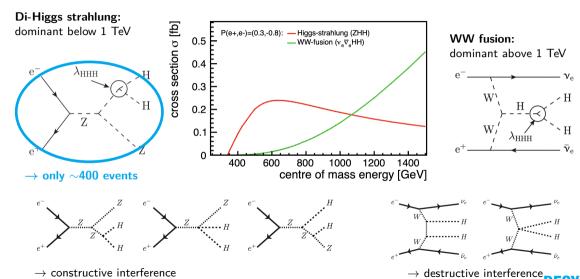
through loop-order-corrections found from EFT fits using single Higgs measurements and running at two different E_{cm}



Direct access:


through double-Higgs production

$$\frac{\Delta \lambda_{HHH}}{\lambda_{HHH}} = c \cdot \frac{\Delta \sigma_{HHX}}{\sigma_{HHX}}$$


cross section measurement

Direct measurement of the Higgs self-coupling from e^+e^-

Direct measurement of the Higgs self-coupling from e^+e^-

The analysis from nearly a decade ago

DESY-THESIS-2016-027

Signature: 6-particle final state

Expected precision on the measurement:

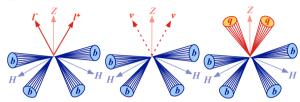
$$\frac{\Delta\lambda}{\lambda} \propto \frac{\Delta\sigma}{\sigma}$$

Challenging because of small cross section

Precision reach

After full ILC running scenario ($HH \rightarrow bbbb + HH \rightarrow bbWW$)

- $ightarrow \Delta \sigma_{ extsf{ZHH}}/\sigma_{ extsf{ZHH}} = 16.8\%$
- $\rightarrow \Delta \lambda_{\rm SM}/\lambda_{\rm SM} = 26.6\%$
- ightarrow $\Delta \lambda_{\rm SM}/\lambda_{\rm SM}~=10\%$ when combined with additional running scenario at 1 TeV


Discovery potential clearly demonstrated

Strategy for further improvements

Better reconstruction tools now

improve precision on $\sigma_{\rm ZHH}$ and $\lambda_{\rm SM}$!

Analysis strategy

Event reconstruction

Overlay removal

- $> \gamma \gamma \rightarrow \text{low-}p_T \text{ hadrons}$
- > Expect $\langle N_{overlay} \rangle = 1.05$ particles/event

Isolated lepton tagging

> identify leptons for selection or rejection

Jet reconstruction

> cluster together remaining event

Flavor tagging

> look for b-jets

Event selection

Cut-based preselection

- > ZHH $\rightarrow \ell\ell$ bbbb
- > ZHH $\rightarrow \nu\nu bbbb$
- > ZHH \rightarrow gabbbb

Kinematic fitting

> hypotheses testing to separate ZHH from ZZH background

Event selection

> based on MVAs

Strategy for improving the Higgs self-coupling measurement at ILC

State-of-the-art projections at ILC performed 6-9 years ago Meanwhile \to significant improvements in our analysis tools

DESY-THESIS-2016-027

Overlay removal

 $\gamma\gamma\to {\rm low-}p_T$ hadrons Expect $\langle N_{\it Overlay}\rangle=1.05$ event @ 500 GeV

Isolated lepton tagging

Optimised for $\ell = \{e, \mu\}$

ightharpoonup Dedicated search for aus

For $arepsilon_{ au}\sim arepsilon_{ ext{e,}\mu} \
ightarrow 8\%$ relative improvement in $\Delta\sigma_{ ext{ZHH}}/\sigma_{ ext{ZHH}}$

Flavor tagging

 $lap{loop}$ Improve b-tagging efficiency

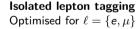
For 5% relative improvement in $\varepsilon_{b\text{-tag}}$ $\rightarrow 11\%$ relative improvement in $\Delta\sigma_{\text{ZHH}}/\sigma_{\text{ZHH}}$

Error parametrisation in kinematic fitting

Mass resolution \propto jet energy resolution

Errorflow: Energy resolution parametrisation for individual jets

Strategy for improving the Higgs self-coupling measurement at ILC


State-of-the-art projections at ILC performed 6-9 years ago Meanwhile \rightarrow significant improvements in our analysis tools

 $\gamma \gamma \rightarrow \text{low-}p_T \text{ hadrons}$ Expect $\langle N_{overlav} \rangle = 1.05$ even

luee Better modelling of the γ Advanced overlay removal

Dedicated search for τ s

For $\varepsilon_{\tau} \sim \varepsilon_{e,\mu}$ \rightarrow 8% relative improvement in $\Delta \sigma_{\rm ZHH}/\sigma_{\rm ZHH}$

Improvement in reconstruction tools has the potential to bring the sensitivity to better than 20%

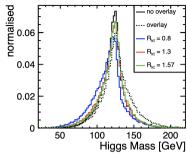
DESY-THESIS-2016-027

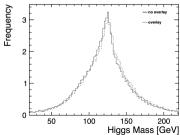
nt in $\varepsilon_{b\text{-tag}}$ nt in $\Delta \sigma_{ZHH}/\sigma_{ZHH}$

Error parametrisation in kinematic fitting

Mass resolution \propto jet energy resolution

Errorflow: Energy resolution parametrisation for individual jets

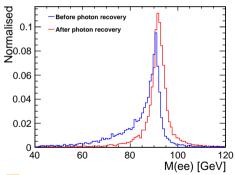

Overlay removal


Event reconstruction

- $\gamma \gamma \rightarrow \text{low-}p_T \text{ hadrons}$
- cluster into very forward beam jets and remove → uncover original event

Problem: Overlapping jets \rightarrow mis-clustering of jets complicating overlay removal

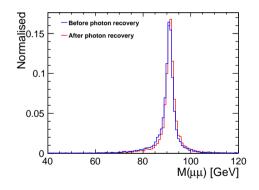
- Better modelling of the $\gamma\gamma$ overlay
 - Previous: $\langle N_{overlav} \rangle = 1.7$ particles/event \rightarrow pessimistic results
 - Now: $\langle N_{overlav} \rangle = 1.05$ particles/event \rightarrow more realistic results
- Advanced overlay removal strategy
- More detailed study needed to determine whether more advanced removal strategy is needed



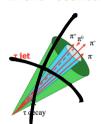
Isolated lepton tagging

Event reconstruction

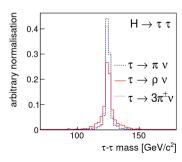
Step 1: identify all isolated leptons

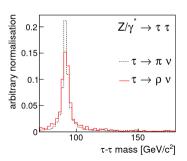

- based on a MVA approach
- optimised for $\ell = e, \mu$

- ldet Dedicated search for aus
 - Separate method for tau lepton reconstruction


Step 2: pair selection

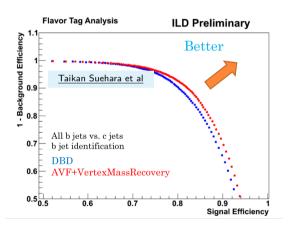
- closest to Z-mass + opposite charge requirement
- followed by BS/FSR recovery


Tau lepton reconstruction


Event reconstruction

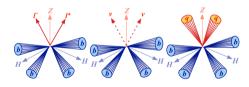
Reconstruction using impact parameters

- > requires accurate τ vertex + precise measurement of decay products
- parametrisation only for single neutrino production
- > $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$ simulated in ILD



arXiv:1507.01700

Flavor tagging


Event reconstruction

Improve b-tagging efficiency

Example @ 80% signal efficiency:

	DBD	new	ATLAS
1-eff(c)	90%	95%	75%
Rejection factor	10	20	4

Better signal efficiencies observed in preselections

Preselection in lepton channel

PRELIMINARY

Selection	$\ell\ell HH$ (new)	$\ell\ell HH$ (old)	$\epsilon_{sig} \; ({ m new})$	$\epsilon_{sig} \; ext{(old)}$
Initial	41.17 ± 0.23	40.51	1.0	1.0
$\#\ell_{ISO}>=2$	26.99 ± 0.19	25.20 ± 0.07	0.66	0.62
$ M_{\ell\ell}-M_Z < 40~{ m GeV}$	24.98 ± 0.18	24.00 ± 0.07	0.61	0.59
$ M_{jj} - M_H < 80 \text{ GeV}$	24.12 ± 0.18	22.50 ± 0.06	0.59	0.56
$60 \text{ GeV} < M_{jj} < 180 \text{ GeV}$	22.71 ± 0.17	22.40 ± 0.06	0.55	0.55
$p_T < 70 \text{ GeV}$	21.67 ± 0.17	21.40 ± 0.06	0.53	0.53
thrust < 0.9	21.65 ± 0.17	21.40 ± 0.06	0.53	0.53

Preselection in neutrino channel

PRELIMINARY

Selection	$\nu\nu HH$ (new)	$ u \nu HH \text{ (old)} $	$\epsilon_{sig} \; ({ m new})$	$\epsilon_{bkg} \; (ext{old})$
Initial	89.8 ± 0.6	80.14	1.0	1.0
$\#\ell_{ISO} = 0$	70.9 ± 0.6	62.4 ± 0.1	0.79	0.78
$ M_{jj} - M_H > 80 \text{ GeV}$	69.0 ± 0.5	61.0 ± 0.1	0.77	0.76
bmax3 > 0.2	55.1 ± 0.5	28.2 ± 0.1	0.61	0.35
$60 \text{ GeV} < M_{jj} < 180 \text{ GeV}$	53.2 ± 0.5	27.3 ± 0.1	0.59	0.34
$10~{\rm GeV} < p_T < 180~{\rm GeV}$	52.5 ± 0.5	27.0 ± 0.1	0.59	0.34
thrust < 0.9	52.2 ± 0.5	26.8 ± 0.1	0.58	0.33
$E_{\rm vis} < 400 {\rm ~GeV}$	51.8 ± 0.5	26.6 ± 0.1	0.58	0.33
M(HH) > 220 GeV	49.0 ± 0.5	25.7 ± 0.1	0.55	0.32

Preselection in neutrino channel

PRELIMINARY

Selection	$ u\nu HH$ (new)	$ u\nu HH$ (old)	$\epsilon_{sig} \; ({ m new})$	$\epsilon_{bkg} \; ext{(old)}$
Initial	89.8 ± 0.6	80.14	1.0	1.0
$\#\ell_{ISO} = 0$	70.9 ± 0.6	62.4 ± 0.1	0.79	0.78
$ M_{jj} - M_{II} > 80 \text{ GeV}$	69.0 ± 0.5	61.0 ± 0.1	0.77	0.76
bmax3 > 0.2	55.1 ± 0.5	28.2 ± 0.1	0.61	0.35
$60 \text{ GeV} < M_{jj} < 180 \text{ GeV}$	53.2 ± 0.5	27.3 ± 0.1	0.59	0.34
$10 \; { m GeV} < p_T < 180 \; { m GeV}$	52.5 ± 0.5	27.0 ± 0.1	0.59	0.34
thrust < 0.9	52.2 ± 0.5	26.8 ± 0.1	0.58	0.33
$E_{\rm vis} < 400 { m ~GeV}$	51.8 ± 0.5	26.6 ± 0.1	0.58	0.33
M(HH) > 220 GeV	49.0 ± 0.5	25.7 ± 0.1	0.55	0.32

• $\nu\nu$ HH: 74 % relative improvement after b-tag cut

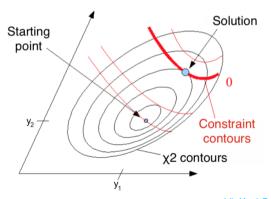
Preselection in hadron channel

PRELIMINARY

Selection	qqHH (new)	qqHH (old)	$\epsilon_{sig} \; ({ m new})$	$\epsilon_{sig} \; ext{(old)}$
Initial	274.1 ± 2.7	273.1	1.0	1.0
$\#\ell_{ISO} = 0$	216.4 ± 2.4	214.0 ± 0.3	0.79	0.78
btag > 0.16	138.7 ± 1.9	81.7 ± 0.2	0.51	0.30
$60 \text{ GeV} < M_{jj} < 180 \text{ GeV}$	132.2 ± 1.8	78.9 ± 0.2	0.48	0.29
$p_T < 70 \mathrm{GeV}$	129.4 ± 1.8	77.4 ± 0.2	0.47	0.28
thrust < 0.9	129.4 ± 1.8	77.3 ± 0.2	0.47	0.28

Preselection in hadron channel

PRELIMINARY


	Selection	qqHH (new)	qqHH (old)	$\epsilon_{sig} \; ({ m new})$	$\epsilon_{sig} \; (ext{old})$
	Initial	274.1 ± 2.7	273.1	1.0	1.0
	$\#\ell_{ISO} = 0$	216.4 ± 2.4	214.0 ± 0.3	0.79	0.78
C	btag > 0.16	138.7 ± 1.9	81.7 ± 0.2	0.51	0.30
	$60 \text{ GeV} < M_{jj} < 180 \text{ GeV}$	132.2 ± 1.8	78.9 ± 0.2	0.48	0.29
	$p_{T} < 70 \text{ GeV}$	129.4 ± 1.8	77.4 ± 0.2	0.47	0.28
	thrust < 0.9	129.4 ± 1.8	77.3 ± 0.2	0.47	0.28

• qqHH: 70 % relative improvement after b-tag cut

Kinematic fitting

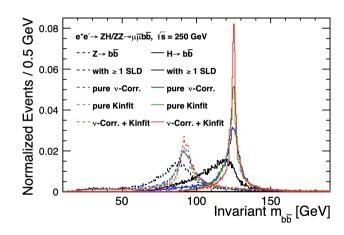
Exploit well-known initial state in e^+e^- colliders for:

- Improve kinematics, e.g. mass resolution
- Hypothesis testing
- Jet-pairing

χ^2 -function to minimise:

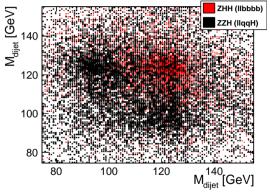
$$L(y) = \Delta y^{\mathsf{T}} \mathbf{V}(y)^{-1} \Delta y + 2 \sum_{k=1}^{m} \lambda_k f_k(a, y)$$

- *y*: set of measured parameters
- a: set of unmeasured parameters
- Δy : corrections to y
- **V**(y): covariance matrix for y
- f_k : set of constraints expressing the fit model
- λ_k : lagrange multipliers



ErrorFlowKinematic fitting

Parametrize sources of uncertainties for *individual* jets:

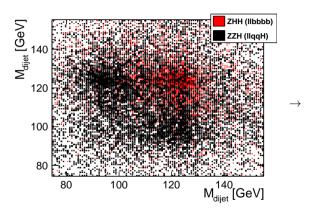

$$\begin{split} \sigma_{\textit{E}_{\textit{jet}}} &= \sigma_{\textit{Det}} \oplus \sigma_{\textit{Conf}} \oplus \sigma_{\nu} \\ & \oplus \sigma_{\textit{Clus}} \oplus \sigma_{\textit{Had}} \oplus \sigma_{\gamma\gamma} \end{split}$$

- $> \sigma_{Det}$: Detector resolution
- $> \sigma_{Conf}$: Particle confusion in Particle Flow Algorithm
- $> \sigma_{\nu}$: Neutrino correction

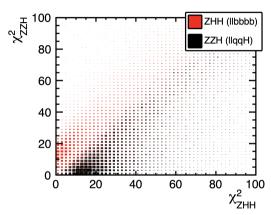
Hypothesis testing

Kinematic fitting

 Pre-fitted dijet-masses show large overlap between signal (ZHH) and background (ZZH) Calculate χ^2 for ZHH and ZZH hypotheses for both ZHH and ZZH events ZHH hypothesis:

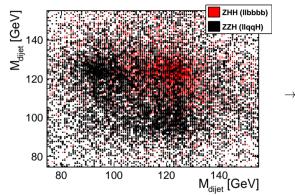

- 4-momentum conservation
- 2 × Higgs mass constraints

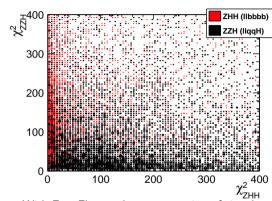
ZZH hypothesis:


- 4-momentum conservation
- $\bullet \ \ Higgs \ mass \ constraint \ + \ Z \ mass \ constraint \\$

Hypothesis testing

Kinematic fitting


 Pre-fitted dijet-masses show large overlap between signal (ZHH) and background (ZZH)


• Hypothesis testing showed good separation for low χ^2 -values of signal (*ZHH*) and background (*ZZH*) in previous analysis <u>DESY-THESIS-2016-027</u>

Hypothesis testing

Kinematic fitting

 Pre-fitted dijet-masses show large overlap between signal (ZHH) and background (ZZH)

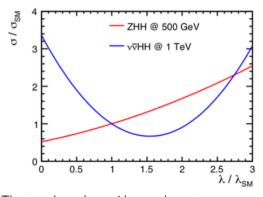
• With ErrorFlow \rightarrow larger separation of signal (ZHH) and background (ZZH)

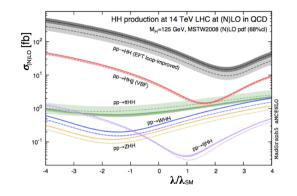
Precision on Higgs self-coupling

collider	indirect-h	direct- <i>hh</i>
HL-LHC	100-200%	50%
ILC250	_	_
ILC500	58%	20%*
ILC1000	52%	10%
CLIC380	_	_
CLIC1500	_	36%
CLIC3000	_	9%
FCC-ee 240	_	_
FCC-ee 240/365	44%	_
FCC-ee (4 IPs)	27%	_
FCC-hh	_	3.4-7.8%

50% sensitivity: establish that $\lambda_{HHH} \neq 0$ at 95% CL **20% sensitivity:** 5σ discovery of the SM λ_{HHH} coupling 5% sensitivity: getting sensitive to quantum corrections to Higgs potential

[arXiv:1910.00012, arXiv:2211.11084]

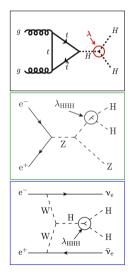

Precision on Higgs self-coupling

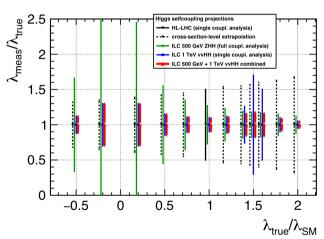

collider	indirect- <i>h</i>	direct- <i>hh</i>
HL-LHC	100-200%	50%
ILC250	_	_
ILC500	58%	20%*
ILC1000	52%	10%
CLIC380	_	_
CLIC1500	_	36%
CLIC3000	_	9%
FCC-ee 240	_	_
FCC-ee 240/365	44%	_
FCC-ee (4 IPs)	27%	_
FCC-hh	_	3.4-7.8%

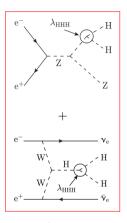
ONLY VALID FOR $\lambda = \lambda_{SM}$ Higgs self-coupling precision dependent on value of λ itself

[arXiv:1910.00012, arXiv:2211.11084]

Precision as a function of new physics

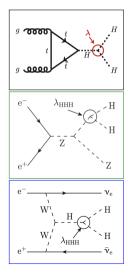

The two channels provide complementary information

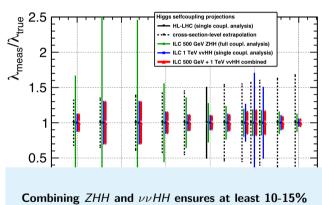

- ZHH gives stronger constraints on $\lambda/\lambda_{\it SM}>1$
- $u \bar{\nu} HH$ gives stronger constraints on $\lambda/\lambda_{SM} < 1$

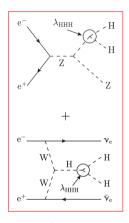

 \bullet LHC gives stronger constraints on $\lambda/\lambda_{\it SM} < 1$

DESY.

Precision on Higgs self-coupling with new physics






• complementarity compensates for λ precision

Precision on Higgs self-coupling with new physics

precision for any value of λ

complementarity compensates for λ precision

Conclusion

- Discovery potential of Higgs self-coupling ILC clearly demonstrated in the past
- Improvements in reconstruction tools are expected to improve the sensitivity to better than 20% at ILC500
- → Update to the state-of-the-art projections for ILC500 is underway!
- Complementarity of ILC500 and ILC1000 to ensure at least 10-15% precision for any value of λ

Conclusion

- Discovery potential of Higgs self-coupling ILC clearly demonstrated in the past
- Improvements in reconstruction tools are expected to improve the sensitivity to better than 20% at ILC500
- → Update to the state-of-the-art projections for ILC500 is underway!
- Complementarity of ILC500 and ILC1000 to ensure at least 10-15% precision for any value of λ

Thank you.