

$HH \rightarrow 4b$ analysis at LHC-ATLAS

Shota Hayashida (Nagoya Univ.) 22. Feb. 2023 ILC Physics Meeting

✓ The $b\bar{b}b\bar{b}$ final state on *HH* search:

Introduction

- One of the most sensitive channels thanks to the largest branching ratio (~34%).
- ✓ This presentation will focus on $HH \rightarrow b\bar{b}b\bar{b}$ analysis at the LHC-ATLAS experiment [arXiv:2301.03212].
 - analysis selection, background estimation etc
- ✓ However, it may not be helpful for the analysis at the ILC, because the background components will be different between the LHC and the ILC ☺
- $\checkmark\,$ Even so, I hope it will be helpful for other analyses.

> Overview of the analysis strategy

✓ The analysis targets $HH \rightarrow b\bar{b}b\bar{b}$ in the ggF and VBF production modes.

- SM ggF $\sigma_{NNLO} \approx 31.05$ fb $@\sqrt{s} = 13$ TeV • SM VBF $\sigma_{N3LO} \approx 1.726$ fb $@\sqrt{s} = 13$ TeV • SM VBF $\sigma_{V3LO} \approx 1.726$ fb $@\sqrt{s} = 13$ TeV
- ✓ The analysis will select events that have
 - at least four *b*-jets
 - invariant masses of *b*-jet pairs around Higgs boson mass
- ✓ Experimental challenges:
 - Higgs boson reconstruction
 - Rejection and modelling of QCD multijet background

\succ HH \rightarrow $b\overline{b}b\overline{b}$ reconstruction

- 1. Select events with at least four *b*-jets (4b events)
 - + $p_{\mathrm{T}} > 40 \; \mathrm{GeV}$ & $|\eta| < 2.5$ & *b*-tagging @77% WP
- 2. Pair the four *b*-jets to reconstruct two Higgs candidates (HC)
 - Exploit a principle that the decay products of the Higgs boson are usually collimated due to the Higgs boson's initial momentum.
 - Select a pairing with the smallest ΔR_{jj} between two jets forming the leading HC.

> ggF and VBF categorization

- 3. Events are categorized into the ggF selection or the VBF selection based on if a pair of VBF jets exist.
 - # of jets ≥ 6
 - $|\Delta \eta_{jj}| > 3 \ \& \ m_{jj} > 1 \ \text{TeV}$
 - $(\sum_i p_i)_T < 65 \text{ GeV} (i: \text{ four } b \text{-jets} + \text{VBF jets})$
- If any of three selections failed
 → Pass to the ggF selection
 If all selections passed
 → Pass to the VBF selection

Background reduction

- 4. QCD multijet background can be reduced by $|\Delta \eta_{HH}| < 1.5$.
 - This cut is not used for the VBF selection due to high sensitivity to SM VBF signal in the region.
- 5. $t\bar{t}$ background also can be reduced by suppressing events coming from top decays $(t \rightarrow bW(\rightarrow q\bar{q}))$.

Plot from my doctoral dissertation

Signal Region (SR) definition

✓ To define signal region, a discriminator X_{HH} is defined as

$$X_{HH} = \sqrt{\left(\frac{m_{H1} - 124 \,\text{GeV}}{0.1 \, m_{H1}}\right)^2 + \left(\frac{m_{H2} - 117 \,\text{GeV}}{0.1 \, m_{H2}}\right)^2},$$

2

 m_{H1} : leading Higgs boson candidate, m_{H2} : sub-leading Higgs boson candidate

which indicates an agreement of HC masses with the expected masses.

6. Events are required to pass $X_{HH} < 1.6$ in both the ggF and VBF selections.

Data and signal cutflow table

	Data	ggI	F Signal	VBF	Signal	_
		\mathbf{SM}	$\kappa_\lambda = 10$	\mathbf{SM}	$\kappa_{2V}=0$	
Common preselection						
Preselection (backup)	5.70×10^{8}	530	7300	22	630	
Trigger class (backup)	2.49×10^{8}	380	5300	16	410	
ggF selection						
Fail VBF selection	2.46×10^{8}	380	5200	14	330	_
At least 4 b -tagged central jets	1.89×10^{6}	86×10	11000×10^{-1}	⁻¹ 1.9	65	
$ \Delta \eta_{HH} < 1.5$	1.03×10^6	72	850	0.94	46	
$X_{Wt} > 1.5$	$\times 10^{-4}$ 7.51 × 10 ⁵	60	570	0.74	43	
$X_{HH} < 1.6 \; (\text{ggF signal region})$	1.62×10^4	29	180	0.24	23	
VBF selection				×	$10^{-2} \times 10^{-2}$	F ²
Pass VBF selection	$3.30 imes 10^6$	5.2	81	2.2	71	
At least 4 b -tagged central jets	2.71×10^4	1.1	15	0.74	28	
$X_{Wt} > 1.5$	2.18×10^{4}	1.0	11	0.67	26	
$X_{HH} < 1.6$	$\times 10^{-6}$ $> 5.02 \times 10^{2}$	0.48	3.1	0.33 🏴	17 🚩	

✓ Data (considered as backgrounds) are reduced to 10^{-4} or 10^{-6} (0.01 or 0.0001%), while HH signals are kept to 10^{-1} or 10^{-2} (10 or 1%) in the ggF and VBF selection.

Analysis categorization in SRs

- ✓ Analysis categorization is adopted to improve sensitivity.
 - $|\Delta \eta_{HH}|$ and X_{HH} are used in the ggF selection.
 - Totally 6 categories are provided per years.
 - Low $|\Delta \eta_{HH}|$ and low X_{HH} category derives the highest sensitivity
 - $|\Delta \eta_{HH}|$ boundary at 1.5 is used in the VBF selection.
 - Low $|\Delta \eta_{HH}|$ is more sensitive to BSM while high $|\Delta \eta_{HH}|$ is more sensitive to SM

✓ 30-40% improvements on the SM ggF and VBF cross-section expected limits with respect to ones without any analysis categorization .

Strategy of background estimation

- ✓ Main background: QCD multijet background (~90%) and $t\bar{t}$ background (~10%)
- $\checkmark\,$ QCD multijet background is hard to model in simulation \otimes
- ✓ This analysis uses a fully data-driven approach using 2b data (events in data with exactly two *b*-jets) to estimate 4b background (2b data →4b bkg).
 - ← 2b data is preferred in this analysis because of having more statistics and similar kinematics to 4b.
- ✓ The background estimation strategy:
 - 1. Define Control Region 1 and 2 (CR1 and CR2)
 - 2. Derive weights (w = 2b/4b) to transfer 2b data to 4b bkg using 2b and 4b data in CR1
 - Apply the weights to 2b data in SR (reweighted 2b data = background prediction)
 - 4. Take a difference between CR1 and CR2 derived weights as CR12 shape systematic uncertainty to account for kinematic differences between CR1 and SR.

Neural Network reweighting

- The relation between 2b data and 4b data is not simple.
 e.g. physics process, analysis selection etc
 - ➔ Need to see differences and correlations in many variables.
- This analysis utilizes a machine learning approach using a neural network (NN) to derive weights [1,2].

(The NN structure developed by keras can be found at backup)

- ✓ Totally 12 (9) training variables are used for the ggF (VBF) channel (<u>backup</u>).
 - ΔR_{ii} between two jets forming Higgs candidate
 - ΔR_{HH} between two Higgs candidates
 - # of jets in the event etc

[1] <u>J. Mach. Learn. Res. 10 (2009) 1391–1445</u> [2] <u>arXiv:1911.00405</u> [eess.SP]

2b poisson + bootstrap uncertainties 12/19

- ✓ NN training is dependent on CR statistics, NN initialization and NN training stochasticity.
- $\checkmark\,$ To account for the variations,
 - Generate 100 different training samples (CR2b + 4b) with the bootstrap resampling technique [1].
 - 2. Train an ensemble of 100 NNs with each different training sample.
 - \rightarrow a set of 100 background estimations is provided.
 - 3. Take a mean of the 100 background estimation as the nominal background estimation.
 - 4. Take the standard deviation as bootstrap uncertainty.
- ✓ 2b poisson uncertainty (of reweighted 2b data) is also included as a statistical uncertainty via sum of square weights.

> NN reweighting performance

- ✓ Good agreements between reweighted 2b data and 4b data in CR1.
- ✓ NN reweighting is validated to have good performance to learn the relation between 2b and 4b data ☺

> NN reweighting validation

- To validate the weights derived in CR1 work in SR, some validation studies were performed.
- ✓ e.g. reversed- $\Delta \eta_{HH}$ ($|\Delta \eta_{HH}| > 1.5$) data
 - Train NNs using reversed- $\Delta \eta_{HH}$ data instead of the nominal data ($|\Delta \eta_{HH}| < 1.5$) with the same setup as the nominal background estimation
 - Check the NN reweighting performance in the reversed- $\Delta \eta_{HH}$ SR.
 - Good agreement between the background estimation and the target 4b data is observed [©]
- The other validation studies (using shifted regions, MC samples, 3b data) also show good agreements.
- $\checkmark\,$ NN reweighting is validated to work in the SR $\odot\,$

> Results of $HH \rightarrow b\overline{b}b\overline{b}$ analysis

- ✓ 95% CL upper limit of 5.4 (8.1) on the signal strength is achieved.
- ✓ Trilinear Higgs self-coupling constraint is $\kappa_{\lambda} \in [-3.9, 11.1]([-4.6, 10.8])$.

Systematic uncertainty

Impact of the dominant uncertainties on the expected upper limit on the signal strength of SM ggF+VBF HH cross-section (μ) when fixing the nuisance parameter(s) with respect to μ with all free nuisance parameters

Source of Uncertainty	$\Delta \mu / \mu$			
Theory uncertainties				
Theory uncertainty in signal cross-section	-9.0%			
All other theory uncertainties	-1.4%			
Background modeling uncertainties				
Bootstrap uncertainty	-7.1%			
CR to SR extrapolation uncertainty	-7.5%			

- ✓ Background modeling uncertainties are the dominant uncertainties.
- ✓ Bootstrap uncertainty will be improved by increasing statistics (this analysis used 126 fb⁻¹).

Ideas for future experiments (1) 17/19

(My interest)

- Higgs boson reconstruction from four b-jets
 - Motivation:
 - 25% of HH → bbbb signals miss a part of b-jets from Higgs decays when selecting four b-jets (p_T > 40 GeV & b-tagging @77% WP) ☺
 - Low pairing accuracy for BSM $HH \rightarrow b\bar{b}b\bar{b}$ signals in the smallest ΔR pairing due to targeting higher $p_{\rm T}$ regimes, e.g. 50% for $\kappa_{\lambda} = 10$ \otimes
 - Idea:
 - Utilize a machine learning approach using a graph neural network (GNN) [1].
 - Select a plausible $HH \rightarrow b\overline{b}b\overline{b}$ system from five or more jets in the event by learning kinematical correlations of the jets.
 - Maybe improve the pairing accuracy at the ILC too $\ensuremath{\textcircled{}{\odot}}$
 - [1] <u>Peter W. Battaglia et., Relational inductive biases, deep</u> <u>learning, and graph networks, arXiv:1806.01261</u>

Ideas for future experiments (2) 18/19

- ✓ Boosted topology of $HH \to b\bar{b}b\bar{b}$
 - Motivation:
 - $H \rightarrow b\overline{b}$ experimental fingerprint often reconstructed as one large jet (boosted).
 - CMS experiment achieved the high sensitivity in the boosted analysis [1].
 - Key:
 - Strong boosted $H \rightarrow b\overline{b}$ tagger is a key to suppress QCD multijet background.
 - NN-based boosted H → bb̄ tagger is developed in the ATLAS [2].
 → almost the same performance as CMS
 - Maybe hard to utilize the boosted topology at the ILC due to lack of events in HHZ cross-section, but the technique will be interesting to improve sensitivity.
- CMS, Search for nonresonant pair production of highly energetic Higgs bosons decaying to bottom quarks, arXiv:2205.06667
 ATLAS, Identification of boosted Higgs bosons decaying Into bb with neural networks and variable radius subjets in ATLAS, ATL-PHYS-PUB-2020-019

(My interest)

Conclusion

- ✓ This presentation focused on the analysis selection and the background estimation for $HH \rightarrow b\bar{b}b\bar{b}$ analysis at the LHC-ATLAS experiment.
- ✓ The analysis at the LHC is challenged by a huge amount of QCD multijet background.
- ✓ The analysis selection is optimized to suppress QCD multijet background, and the background estimation is developed for the precise modeling.
- ✓ Not sure that the techniques will be helpful for $HH \rightarrow b\bar{b}b\bar{b}$ analysis at the ILC, but hope it will be helpful for other analyses.

0 lepton				
Lepton	No lepton: no tight electron and good muon with $p_{\rm T} > 25 {\rm ~GeV}$			
Jet	Two loosely <i>b</i> -tagged jets (77% eff. WP) with $p_T > 25$ GeV, and two extra jets with $p_T > 25$ GeV			

1 lepton			
Lepton	One lepton: one tight electron or good muon with $p_{\rm T} > 25 {\rm ~GeV}$		
Jet	Two loosely <i>b</i> -tagged jets (77% eff. WP) with $p_T > 25$ GeV		

Table 6.1 Summary of pre-selection used in this analysis.

Year	Requirement	ATLAS Terminology	Туре
2016	Two <i>b</i> -jet (60% eff. WP) with $E_{\rm T} > 55 {\rm ~GeV}$ and one extra jet with $E_{\rm T} > 100 {\rm ~GeV}$	HLT_j100_2j55_bmv2c2060_split	2b1j
	Two <i>b</i> -jet (60% eff. WP) with $E_{\rm T} > 35 \text{ GeV}$ and two extra jet with $E_{\rm T} > 35 \text{ GeV}$	HLT_2j35_bmv2c2060_split_2j35_ L14J15.0ETA25	2b2j
2017	Two <i>b</i> -jet (70% eff. WP) with $E_{\rm T} > 55 \text{ GeV}$ and one extra jet with $E_{\rm T} > 150 \text{ GeV}$	HLT_j110_gsc150_boffperf_split_ 2j35_gsc55_bmv2c1070_split_L1J85_3J30	2b1j
	Two <i>b</i> -jet (40% eff. WP) with $E_{\rm T} > 35 \text{ GeV}$ and two extra jet with $E_{\rm T} > 35 \text{ GeV}$	HLT_2j15_gsc35_bmv2c1040_split_ 2j15_gsc35_boffperf_split_L14J15.0ETA25	2b2j
2018	Two <i>b</i> -jet (70% eff. WP) with $E_{\rm T} > 55 \text{ GeV}$ and one extra jet with $E_{\rm T} > 150 \text{ GeV}$	HLT_j110_gsc150_boffperf_split_ 2j45_gsc55_bmv2c1070_split_L1J85_3J30	2b1j
	Two <i>b</i> -jet (60% eff. WP) with $E_{\rm T} > 35 {\rm ~GeV}$ and two extra jet with $E_{\rm T} > 35 {\rm ~GeV}$	HLT_2j35_bmv2c1060_split_2j35_ L14J15.0ETA25	2b2j

Table 5.1 List of multi *b*-jet triggers used for this analysis.

Data and signal cutflow table

	Data	ggF Signal		VBF Signal	
		\mathbf{SM}	$\kappa_\lambda = 10$	\mathbf{SM}	$\kappa_{2V}=0$
Common preselection					
Preselection	5.70×10^{8}	530	7300	22	630
Trigger class	2.49×10^8	380	5300	16	410
ggF selection					
Fail VBF selection	2.46×10^8	380	5200	14	330
At least 4 b -tagged central jets	1.89×10^6	86	1000	1.9	65
$ \Delta \eta_{HH} < 1.5$	1.03×10^{6}	72	850	0.94	46
$X_{Wt} > 1.5$	$7.51 imes 10^5$	60	570	0.74	43
$X_{HH} < 1.6 \; (\text{ggF signal region})$	1.62×10^4	29	180	0.24	23
VBF selection					
Pass VBF selection	3.30×10^{6}	5.2	81	2.2	71
At least 4 b -tagged central jets	2.71×10^4	1.1	15	0.74	28
$X_{Wt} > 1.5$	2.18×10^4	1.0	11	0.67	26
$X_{HH} < 1.6$	5.02×10^{2}	0.48	3.1	0.33	17
$m_{HH} > 400 \mathrm{GeV} \mathrm{(VBF \ signal \ region)}$	3.57×10^2	0.43	1.8	0.30	16

This presentation omits to mention a cut of $m_{HH} > 400$ GeV for the VBF selection, but we required the cut due to the poor background modelling in the region.

> NN structure

- $\checkmark\,$ The NN used for the ggF (VBF) channel consists of
 - one input layer
 - three densely connected hidden layers of 50 (20) nodes each with ReLU activation functions
 - a single node linear output
- ✓ The loss function is based on Ref. [1,2]

[1] <u>J. Mach. Learn. Res. 10 (2009) 1391–1445</u> [2] <u>arXiv:1911.00405</u> [eess.SP]

$$\mathcal{L}(Q(x)) = \mathbb{E}_{x \sim p_{2b}} \left[\sqrt{e^{Q(x)}} \right] + \mathbb{E}_{x \sim p_{4b}} \left[\frac{1}{\sqrt{e^{Q(x)}}} \right]$$

Q(x): an estimator dependent on input variables x, $\mathbb{E}_{x \sim p2b(4b)}$: expectation value with respect to the 2b (4b) probability density.

The reweighting function $w = p_{4b}/p_{2b}$ can be derived once NN is trained.

$$Q_{\min}(x) \equiv \arg\min_{Q} \mathcal{L}(Q(x)) = \log \frac{p_{4b}(x)}{p_{2b}(x)}$$

> NN training variables

ggF		\mathbf{VBF}		
1.	$\log(p_{\rm T})$ of the 2 nd leading Higgs boson candidate jet	1.	Maximum dijet mass from the possible pairings of the four Higgs boson candi-	
2.	$\log(p_{\rm T})$ of the 4 th leading Higgs boson		date jets	
	candidate jet	2.	Minimum dijet mass from the possible	
3.	$\log(\Delta R)$ between the closest two Higgs		pairings of the four Higgs boson candi-	
	boson candidate jets	-	date jets	
4.	$\log(\Delta R)$ between the other two Higgs	3.	Energy of the leading Higgs boson can-	
	boson candidate jets		didate	
5.	Average absolute η value of the Higgs	4.	Energy of the subleading Higgs boson	
	boson candidate jets	_	candidate	
6.	$\log(p_{\rm T})$ of the di-Higgs system	5.	Second-smallest ΔR between the jets in	
7.	ΔR between the two Higgs boson candi-		the leading Higgs boson candidate (from	
	dates		the three possible pairings for the lead-	
8.	$\Delta \phi$ between jets in the leading Higgs bo-		ing Higgs candidate)	
	son candidate	6.	Average absolute η value of the four	
9.	$\Delta \phi$ between jets in the subleading Higgs		Higgs boson candidate jets	
	boson candidate	7.	$\log(X_{Wt})$	
10.	$\log(X_{Wt})$	8.	Trigger class index as one-hot encoder	
11.	Number of jets in the event	9.	Year index as one-hot encoder (for years	
12.	Trigger class index as one-hot encoder		inclusive training)	