Measuring the tau polarisation at the ILC

Keita Yumino, Daniel Jeans

KEK, SOKENDAI

2nd general meeting of ILC-Japan Physics Working Group

SOKEND

At the ILC, forward-backward asymmetry $A_{FB} = \frac{3}{4}A_e \cdot A_f$ can be measured Thanks to ILC's polarised beams, A_e can be measured $\Rightarrow A_f$ can be extracted from A_{FB}

it is possible to search for new physics, such as heavy gauge boson Z'

We can also directly measure A_{τ} by using tau polarisation $P(\tau)$

$$\frac{dP(\tau)}{d\cos\theta} = \frac{3}{8}A_{\tau}(1+\cos^2\theta) + \frac{3}$$

The aim of this study . The reconstruction of tau spin orientation ("**Polarimeter**") in order to measure polarisation to investigate new physics.

Motivation

By measuring A_{FR} precisely and looking for deviations from SM predictions,

Polarimeter

Reconstruction of tau polarisation $P(\tau)$ depends on tau decay mode.

Polarimeter vectors of $\tau \rightarrow \pi \nu$ in τ rest frame

$$h(\tau^{\pm} \to \pi^{\pm} \nu) \propto p_{\pi^{\pm}}$$

Polarimeter vectors of $\tau \rightarrow \rho \nu$ in τ rest frame

$$h(\tau^{\pm} \to \pi^{\pm} \pi^{0} \nu) \propto m_{\tau}(E_{\pi^{\pm}} - E_{\pi^{\pm}})$$

"Polarimeter"

The cosine of the angle this polarimeter vector makes to the tau flight direction

only look at $\tau \to \pi \nu$ (BR ~ 10%)

 $\tau \rightarrow \rho \nu ~(\text{BR} \sim 26\%)$

in this talk

Previous study

Extract polarimeter without using neutrino information "Approximate" polarimeters based only on the momenta of visible tau decay products "Optimal" polarimeters including the neutrino component

In this talk: reconstruct neutrino momentum \rightarrow optimal polarimeters

Simulation setup

- WHIZARD ver 2.8.5.
- The decay of the polarised tau was done using TAUOLA.
- MC truth information was used.

• Signal event sample with $100 \% e_L^- e_R^+$ beam polarisations were generated using

- Primary interaction occurs along the beam line(x = y = 0),
- Two taus are back-to-back in x-y plane,
- Charged particle travels approximately in a straight line near IP.

• Two tau momenta lie in a plane containing z-axis, at some azimuthal angle ϕ

 \star The intersection between plane and trajectory : the decay points of τ

For a plane with azimuthal angle the intersection of trajectories with this plane can be calculated.

then choice of z_{IP} gives direction of tau momenta

 \Rightarrow How can we choose ϕ, z_{IP} ?

Constraints

- 4-momentum conservation
- tau mass $\times 2$
- Decay point on trajectory $\times 2$

For choice of z_{IP} , ϕ we can calculate tau 4-momenta P_{τ}

the invariant mass of the missing (neutrino) momentum for each tau can be calculated

 $P_{\tau} = P_{\tau} - P_{vis}$

We choose the values of z and ϕ which result in neutrino masses closest to zero

 (ϕ, z_{IP}) –

$$\rightarrow (\alpha, z_{IP})$$

 α_2 can be calculated by imposing back-to-back-ness in the x-y projection

Two methods to find solutions

 (ϕ, z_{IP}) : unknown

 (α, z_{IP}) : unknown

We have combined them

 \boldsymbol{Z}

We choose the values of z and ϕ which result in neutrino masses closest to zero

example event with 1 solution

Find solutions

find local minima in $\sum |m_{\nu_i}^2|$

We choose the values of z and ϕ which result in neutrino masses closest to zero example event with 2 solutions

Find solutions

We choose the values of z and ϕ which result in neutrino masses closest to zero

example event with 3 solutions

Find solutions

example event with 4 solutions

We choose the values of z and ϕ which result in neutrino masses closest to zero example event with 5 solutions

Find solutions

We choose the values of z and ϕ which result in neutrino masses closest to zero example event with 6 solutions

Find solutions

Method efficiency

Impact parameter method efficiency is > 90 % for events with $m_{\tau\tau} \sim 250 \text{ GeV}$

MC

 $\tau
ightarrow \pi \nu$

Polarimeter

PFO

 $\tau \rightarrow \pi \nu$

Impact parameter method vs MC

Polarimeter

- Full reconstruction of $e^+e^- \rightarrow \tau^+\tau^-$ using impact parameter was investigated.
- New method to find solutions was implemented and method efficiency was improved For events with $m_{\tau\tau} \sim 250$ GeV, new method efficiency is > 90 %
- Polarimeters were reconstructed in the $\tau \to \pi \nu$ and $\tau \to \rho \nu$ decay modes.
- Reasonable agreement between MC truth polarimeter and the one from "Impact parameter method" for both $\tau \to \pi \nu$ and $\tau \to \rho \nu$ decay were found.

- Quantify the precision with which the tau polarisation can be measured at ILC-250.
- Investigate search for new physics by using the tau polarisation.

Summary

Future plan

Before FSR

After FSR

FSR event

FSR event

example event with 4 solutions

We have up to four solutions

- Tau polarisation precision measurement
 - Jackknife method
 - Pseudo-experiment

Use all solutions as they are. (not good) Several entries / event \rightarrow not independent

Take the average of all solutions.

If each tau has several solutions, apply <u>equal</u> weight

weight =
$$\frac{1}{n_{\tau} \cdot n_{sol}}$$

Tau statistics @ ILC-250

250

The 2.0ab⁻¹ of integrated luminosity foreseen at ILC-250

$\sigma_{LR} = 21214.001 \text{ fb}$ $\sigma_{RL} = 16363.043 \text{ fb}$ $N_{\rm LR} = 1.2 \times 10^7$ $N_{\rm RL} = 9.3 \times 10^6$

radiative return $(91 \pm 5[\text{GeV/c}^2])$ $N = N_{LR} \times 34.6\% + N_{RL} \times 29.6\%$ $N = 6.8 \times 10^{6}$

- High mass τ - τ (245 ± 5[GeV/c²]) - $N = N_{LR} \times 22.9\% + N_{RL} \times 24.3\%$ $N = 4.9 \times 10^{6}$

