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Electromagnetic calorimeter (ECAL): Detects positions ,and energy of gamma rays

— Higher accuracy of particle identification: PFA

ECAL equips a lot of channels (~108) to identify each particle.

Sandwich structure with 30 alternating layers of Si detection layer and W absorption layer.

W-absorbing layer: Electromagnetic shower is induced when electrons and gamma rays are incident.
= ~ 24 X, in total

Feature: Moliere radius is small enough to separate each particle
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3 Particle Flow Algorithm (PFA)
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* A method to obtain higher jet energy resolution by reconstructing the particle :
trajectory for each type of particle in the jet. 1000 e
x/mm
* Charged particles: Tracker
* Photons : ECAL T partte Fiow (Lb+PandorapFA) ]
---------- Particle Flow (confusion term) 4
° . 8 RS Calorimeter Only (ILD =
Neutral hadrons : HCAL N g (D) :
* Resolution of a calorimeter for a single particle : 2 of e _
Perfect PFA: ~20%/+/ E(GeV) gg 4
PandoraPFA : ~30%/+/E(GeV) (< 100 GeV) b ;
w/o PFA :50 — 60%// E(GeV) 0 pm

Ejet/GeV




General Meeting of ILC-Japan Physics WG 2023/2/22

4 Application of Deep Learning to PFA

& Pandora LC Algorithms it
60+ algorithms for fine-granularity detectors
. ConeClustering
Current PFA algorithm : PandoraPFA E @ V
—>The pattern recognition based on the human-tuned parameters iy — Topacgia (\ A
Algorithms one  Bac k[mctt ered |_ op s
* Ve may achieve better accuracy by considering the hidden and L v
. \ . Associ-aiion
complicated relationships among the hit information e e S fore gl o *f oF e
yer postio N b‘ i o 12Gev 8 32 GeV
. . . . N Reclus!ering :> ? ?
* Aim to further improve performance by using deep learning | Agorithms | 30 Gov T |
tec h n iq ue. ) _ e Fragment Removal \
5, 3 GeV c . Algorithms ;\
e ‘ \QQQ {f‘—"’{z
Layers in close ction of ener; PFO Con: ion N i 4
ontact in cone Alg(;::;:qczo E> /";‘"- f "i' \

Pandora LC Reconstruction
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5 Calorimeter Clustering

* Input: feature values of hits in the calorimeter e.g., position, energy, etc.
—> discriminate each cluster

* Deep Learning Architecture

* Developed for a CMS detector that has a lot of separated channels for PFA
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* One of the most basic structures in deep learning == {\(
* Consists of an input layer, a hidden layer, and an output layer - . .
[ ]

A more expressive network can be built by increasing the number of layers

Graph Neural Network

A network is constructed as a graph consisting of nodes (points) and edges (lines)
Not only can it learn the features of materials with a graph-like structure, but it

can also be used in many ways, such as expressing the relationship between

features as a graph. h’\
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7 GravNet

Input Data : VXFjy

FLr

O @0 O

V : Number of hits for each detector
Fiy : Number of the features for each hit

S : Set of coordinates in some learned representation space

* F;p :learned representation of the vertex features ’ \ /6, .
* Input data of initial dimension V' X F}y is converted into a graph. ./@\ /é)\.
* The coordinates of the graph is updated by the learning of the ne ’ ./
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8 GravNet
™

|4 . / ~i i
el Jix= fi *V(djx)
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The contribution of each point is bigger depending on the
distance between the points

The output is calculated for each point based on the contribution

At last, the outputs (F}p) are concatenated with the initial inputs
and previous outputs and pass the FC layer.

The Fyoyr output carries collective information from each vertex

and its surrounding.
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9 Object Condensation

A loss function technique to recognition for multi-object

* Get the output from GravNet as [ and output whether the hit seems to be a representative
point of the particle (0 < f < I)

* Employs two terms as Loss terms to improve cluster and background identification

* Ly :The closer the hit is to a particle with high § and belonging to the same particle, the
smaller it is, and the more it belongs to a different particle, the larger it is.
— Equivalent to the attractive and repulsive forces acting on an electric charge

* Lg : Converge (5 to | for only one of each particle corresponding to a true cluster

The remaining § works its way closer to 0
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10

Generation of Input Data

2023/2/22

Two gamma event

* Two gamma events are generated by the simulation software

* 10000 Events are generated for each of the five data sets every 0.l rad

from 0.1 to 0.5 rad
* 0:85/180m, ¢: random

Generation of MC particles

Simulation based on detector

geometry by ddsim

Reconstruction of hits
in the detector by Marlin

Gamma-ray

Interaction
point

Calorimeter
0.1 — 0.5 rad
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Il Event Display

* Cluster identification resulting from learning (test data) -

predicted label true label

0.12 0.12
0.10 0.10

z Z
0.08 0.08
0.06 0.06
0.04 0.04

0.6 0.6
—0.85 0.3 « 085,40 03

x  —0.80
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12 Event Display

¢ Cluster identification resulting from learning for small opening angles(test data) -

true label i
rue labe predicted label

predicted label

0.15 0.15
0.10 , 0.10 ,
0.05 0.05
0.00 0.00
0.500 0.500
0.475 0.475
0.95 0.400 0.95 0.400
X 1.00
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13

Evaluation of Network

2023/2/22

Average = 96.08% 0.1 rad

Number of hits which is predicted correctly

* Accuracy -

into other particles.

00000

00000

Number of hits with true label of each cluster
Average = 99.56% 0.5 rad
* The simulation data includes events where photons are converted
 As input data, events with only two clusters are selected
Angle[rad] 0.1 0.2 0.3 0.4 0.5

Accuracy[%]




General Meeting of ILC-Japan Physics WG 2023/2/22

14 Summary

* Graph Neural Networks are applied to the PFA and shower clustering algorithms in the ILC analysis

framework.
* The two gamma events are generated and the GravNet architecture is applied.

* The training results show an accuracy of more than 90% for each angle.

Plan :

* This architecture will be examined with more realistic events (jets etc.) for performance comparison

with the current PFA algorithm
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16 GRAVNET - NETWORK -

* Input Data : BXV XFy
B : Number of examples including in a batch
V : Number of hits for each detector
Fiy : Number of the features for each hit

* S:Set of coordinates in some learned representation space (a)

* F;p :learned representation of the vertex features

FLr

O
O
O
O
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17 GRAVNET

(b) .
@
S2A o
\ @~
Input example of initial dimension V' XFjy is converted into a graph. @/ .\
the f]‘- features of the v; vertices connected to a given vertex or aggregator vy, are converted into the fj; . \. > ©—,
quantities, through a potential
(function of euclidean distance dy ). .
A
The potential function V(djk) is introduced to enhance 1
the contribution of close-by vertices.
! . 2
Example.V(djk) = exp(—dj;) (d) S1,S; =2 8
—~1 . . \ fi - F
The fj, functions computed from all the edges associated o N| j LR
. . n W f; ~i i
to a vertex of aggregator v), are combined, generating a new Jix= fi *V(djx)
~1 d1x
feature f;, of vy. v gl
. 4
—~1

Example : the average of the fj, across the j edges / their maximum ) d/@d\‘m v

o fu v [FR

f PN fe=§ Max(f)

V3 f3i




18 GRAVNET

For each choice of gathering function, a new set of featur

The F, vector is concatenated to the initial vector.

Activation function : tanh

The Foyr output carries collective information from

each vertex and its surrounding.



19 Object Condensation

* Get the output from GravNet as [ and output whether the hit seems to be ar
point of the particle (0 < f < I)

* Employs two terms as Loss terms to improve cluster and background identification

* Ly :The closer the hit is to a particle with high § and belonging to the same particle, the
smaller it is, and the more it belongs to a different particle, the larger it is.

— Equivalent to the attractive and repulsive forces acting on an electric charge

* Lg : Converge (8 to | for only one of each particle corresponding to a true cluster

The remaining § works its way closer to 0
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20 LOSS FUNCTION - NETWORK LEARNING -

* The value of §; (0 < B; < 1) is used to define a charge q; per vertex i A
q; = arctanh?®f; + qmin (B; > 1: q; > +)

* The charge g; of each vertex belonging to an object k
defines a potential V;;, (x) « g;

* The force affecting vertex j can be described by

M. = 1 (vertex i belonging to object k) N
< 0 (otherwise) qj - VVi(xj) =q;V ZMikVik(xj, qi)

i=1
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21 LOSS FUNCTION

* The potential of object k can be approximated : A

Vi(x) = Vor (X, qak), With gor = max q; M.
1
* An attractive and repulsive potential are defined as :

Vi(®) = [Ix — Xo|1°qak, and

Vie(x) = max(0, 1 — ||x — x¢ ) qa-

* The total potential loss Ly, :

N K
%Z Z( VG + (= My Tex)).
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22 LOSS FUNCTION

* The Ly has the minimum value for q; = quin + € Vi

* To enforce one condensation point per object, and none for background or noise

vertices, the following additional loss term Lg is introduced : sg : hyperparameter describing the
background suppression strength
K : Maximum value of objects

N
1 1 Ng : Number of background

L —_— — 1 — Pa iPi> 2 a H 1

P~k Xk:( Pak) + 5B Np IZn P n; : Noise tag (if noise, it equals 1.)

* The loss terms are also weighted by arctanh? §3; :
p;: Featutes

. L;(t;,p;) : Loss term (Difference between true

N
Ly=—= . : Z Li(t, p;) &, with labels and outputs of network)
i=15i =1

& =(1—n;) arctanh? Bi.




EVALUATION

Number of hits with predicted label correctly

* Acedraey—=
4 Number of hits with true label

* Opening angle = 0.5 rad (the largest one)

* Event selection : events which include 2 clusters

Average = 99.56%

35000 A




EVALUATION

Opening angle = 0.4 rad

Average = 99.68%

35000 -

30000 A

25000 A

20000 A

15000 -

10000 A

5000 -

0.0 0.2 0.4 0.6 0.8

0.96 0.97 0.98 0.99 1.00




EVALUATION

Opening angle = 0.3 rad

Average = 99.30%

30000 ~

25000 A

20000 +

15000

10000

5000 A

T T y
0.96 0.97 0.98 0.99 1.00

0.0 0.2 0.4 0.6 0.8




EVALUATION

Opening angle = 0.2 rad

Average = 98.64%

25000 A

20000 A

15000 A

10000 A

5000 A

y
0.96 0.97 0.98 0.99 1.00

0.0 0.2 0.4 0.6 0.8




EVALUATION

Opening angle = 0.1 rad (the smallest one)

Average = 96.08%

14000 A

12000 A

10000 -

8000 A

6000 -

4000 -

2000 A

0.0 0.2 0.4 0.6




COMPARISON BETWEEN PREDICTION AND TRUE LABEL

Good example : predicted label true label
[ 012 °e » [ 0.12
L 0.10 « P°, I 0.10
o z " z
- 0.08 ® T 0.08
L] s o
"~ 0.06 . [ 0.06
e P L B L
0.6 0.6
: 0.5
-1.00
0.4 ~0.95 0.4
g ~9%0 85 ’
x  -0.80 03




COMPARISON BETWEEN PREDICTION AND TRUE LABEL

The case in which there is a distant hit

predicted label / true label
|

0.14 L 0.14

" " 0.12 ‘ " 0.12
L) i K o L £
a 0.10 0.10
t - 0.08 t T 0.08
" 0.06 - 0.06

L L]
o
—-0.6 -0.6
-0.2 o —0.7 02, -0.7
0.2 -0.8 y 0.2 —0.8 vy

0.4 0.4
x P og O x 00,5 09

H




COMPARISON BETWEEN PREDICTION AND TRUE LABEL

predicted label true label

- 0.0 - 0.0




COMPARISON BETWEEN PREDICTION AND TRUE LABEL

Confusiofiexample : T D
predicted label true label
.
: e @ [
~ 0.130 0.150
0.125 0.125
0.100

0.075 0.100
0.15 0.050 0.15 g'ggg

' 0.025 :
0.20 0.20 0.025

0.25 _0-90 0-25
« 0.30 0 520-90
0.35 00"
-1.05
0.40 =110~y




NUMBER OF CLUSTER IN EACH EVENT(JUST 100 EVENTS)

Number of true cluster in each event Number of predicted cluster in each event
80 - 60 -
70 -
50 -
. 60
5 -
2 o § 40
Y L
° These events should be 5
g 40 5 30 4
E checked g
< 30 - =
20 -
20 -
10 - 107
0
2 3 4 5 6 0

Number of true cluster 2 3 q 5 6 7
Number of predicted cluster in each event




