

Clustering of Calorimeter Hits with GravNet

Kyushu Univ.^A, Osaka Univ. RCNP ^B, Osaka Univ. IDS^C, Kyushu Institute of Technology ^D Shusaku Tsumura ^A, Taikan Suehara ^A, Kiyotomo Kawagoe ^A, Hajime Nagahara ^{B,C}, Yuta Nakashima ^{B,C}, Noriko Takemura^{c,d} 2023/2/22

General Meeting of ILC-Japan Physics WG

2 ILD / SiW ECAL

- Electromagnetic calorimeter (ECAL): Detects positions , and energy of gamma rays
 → Higher accuracy of particle identification: PFA
- ECAL equips a lot of channels $(\sim 10^8)$ to identify each particle.
- Sandwich structure with 30 alternating layers of Si detection layer and W absorption layer.
- W-absorbing layer: Electromagnetic shower is induced when electrons and gamma rays are incident. $\rightarrow \sim 24 X_0$ in total
- Feature: Moliere radius is small enough to separate each particle

General Meeting of ILC-Japan Physics WG

3 Particle Flow Algorithm (PFA)

- A method to obtain higher jet energy resolution by reconstructing the particle trajectory for each type of particle in the jet.
- Charged particles:Tracker
- Photons : ECAL
- Neutral hadrons : HCAL
- Resolution of a calorimeter for a single particle : Perfect PFA: $\sim 20\% / \sqrt{E(GeV)}$ PandoraPFA : $\sim 30\% / \sqrt{E(GeV)}$ (< 100 GeV) w/o PFA : 50 - 60% / $\sqrt{E(GeV)}$

4 Application of Deep Learning to PFA

- Current PFA algorithm : PandoraPFA
 The pattern recognition based on the human-tuned parameters
- We may achieve better accuracy by considering the hidden and complicated relationships among the hit information
- Aim to further improve performance by using deep learning technique.

Pandora LC Reconstruction

General Meeting of ILC-Japan Physics WG

5 Calorimeter Clustering

- Input: feature values of hits in the calorimeter e.g., position, energy, etc.
 → discriminate each cluster
- Deep Learning Architecture
 - Developed for a CMS detector that has a lot of separated channels for PFA

6 Deep Learning

Fully Connected Layer

- One of the most basic structures in deep learning
- Consists of an input layer, a hidden layer, and an output layer
- A more expressive network can be built by increasing the number of layers

Graph Neural Network

- A network is constructed as a graph consisting of nodes (points) and edges (lines)
- Not only can it learn the features of materials with a graph-like structure, but it can also be used in many ways, such as expressing the relationship between features as a graph.

7 GravNet

• Input Data : $V \times F_{IN}$

- V: Number of hits for each detector F_{IN} : Number of the features for each hit
- S : Set of coordinates in some learned representation space
- F_{LR} : learned representation of the vertex features
- Input data of initial dimension $V \times F_{IN}$ is converted into a graph.
- The coordinates of the graph is updated by the learning of the ne

8 GravNet

- The contribution of each point is bigger depending on the distance between the points
- The output is calculated for each point based on the contribution
- At last, the outputs $(\widetilde{F_{LR}})$ are concatenated with the initial inputs and previous outputs and pass the FC layer.
- The F_{OUT} output carries collective information from each vertex and its surrounding.

9 Object Condensation

- A loss function technique to recognition for multi-object
- Get the output from GravNet as β and output whether the hit seems to be a representative point of the particle ($0 < \beta < 1$)
- Employs two terms as Loss terms to improve cluster and background identification

 $L = L_V + L_\beta$

- L_V : The closer the hit is to a particle with high β and belonging to the same particle, the smaller it is, and the more it belongs to a different particle, the larger it is.
 - \rightarrow Equivalent to the attractive and repulsive forces acting on an electric charge
- L_{β} : Converge β to 1 for only one of each particle corresponding to a true cluster The remaining β works its way closer to 0

IO Generation of Input Data

- Two gamma events are generated by the simulation software
- 10000 Events are generated for each of the five data sets every 0.1 rad from 0.1 to 0.5 rad
- θ : 85/180 π , ϕ : random

Gamma-ray

2023/2/22

II Event Display

• Cluster identification resulting from learning (test data) :

12 Event Display

• Cluster identification resulting from learning for small opening angles(test data) :

11	Angle[rad]	0.1	0.2	0.3	0.4	0.5	1 6 9
./	Accuracy[%]	96.08	98.64	99.30	99.68	99.56	1. 7.

14 Summary

- Graph Neural Networks are applied to the PFA and shower clustering algorithms in the ILC analysis framework.
- The two gamma events are generated and the GravNet architecture is applied.
- The training results show an accuracy of more than 90% for each angle.

Plan :

• This architecture will be examined with more realistic events (jets etc.) for performance comparison with the current PFA algorithm

15

BACKUP

I6 GRAVNET - NETWORK -

- Input Data : $B \times V \times F_{IN}$
 - *B* : Number of examples including in a batch
 - V : Number of hits for each detector
 - $F_{\mbox{\scriptsize IN}}$: Number of the features for each hit
- S : Set of coordinates in some learned representation space
- F_{LR} : learned representation of the vertex features

I7 GRAVNET

- Input example of initial dimension $V \times F_{IN}$ is converted into a graph.
- the f_j^i features of the v_j vertices connected to a given vertex or aggregator v_k are converted into the $\tilde{f_{jk}}^i$ quantities, through a potential (function of euclidean distance d_{jk}).
- The potential function $V(d_{jk})$ is introduced to enhance the contribution of close-by vertices. Example: $V(d_{jk}) = \exp(-d_{jk}^2)$
- The fiⁱ functions computed from all the edges associated to a vertex of aggregator v_k are combined, generating a new feature fⁱ_k of v_k.
 Example : the average of the fiⁱ_{jk} across the j edges / their maximum

I8 GRAVNET

- For each choice of gathering function, a new set of featur
- The $\widetilde{F_{LR}}$ vector is concatenated to the initial vector.
- Activation function : tanh
- The F_{OUT} output carries collective information from each vertex and its surrounding.

19 Object Condensation

- Get the output from GravNet as β and output whether the hit seems to be a r point of the particle (0 < β < 1)
- Employs two terms as Loss terms to improve cluster and background identification

$$L = L_V + L_\beta$$

- L_V : The closer the hit is to a particle with high β and belonging to the same particle, the smaller it is, and the more it belongs to a different particle, the larger it is.
 - \rightarrow Equivalent to the attractive and repulsive forces acting on an electric charge
- L_{β} : Converge β to 1 for only one of each particle corresponding to a true cluster The remaining β works its way closer to 0

20 LOSS FUNCTION - NETWORK LEARNING -

- The value of β_i ($0 < \beta_i < 1$) is used to define a charge q_i per vertex i $q_i = \operatorname{arctanh}^2 \beta_i + q_{\min} \quad (\beta_i \to 1 : q_i \to +\infty)$
- The charge q_i of each vertex belonging to an object k defines a potential $V_{ik}(x) \propto q_i$
- The force affecting vertex j can be described by

 $M_{ik} = \begin{cases} 1 \ (vertex \ i \ belonging \ to \ object \ k) \\ 0 \ (otherwise) \end{cases}$

$$q_j \cdot \nabla V_k(x_j) = q_j \nabla \sum_{i=1}^N M_{ik} V_{ik}(x_j, q_i)$$

21 LOSS FUNCTION

• The potential of object k can be approximated :

 $V_k(x) \approx V_{\alpha k}(x, q_{\alpha k}), \text{ with } q_{\alpha k} = \max_i q_i M_{ik}.$

• An attractive and repulsive potential are defined as :

 $\breve{V}_k(x) = ||x - x_{\alpha}||^2 q_{\alpha k}, \text{ and}$ $\hat{V}_k(x) = \max(0, 1 - ||x - x_{\alpha}||) q_{\alpha k}.$

• The total potential loss L_V :

$$L_V = \frac{1}{N} \sum_{j=1}^{N} q_j \sum_{k=1}^{K} \left(M_{jk} \breve{V}_k(x_j) + (1 - M_{jk}) \hat{V}_k(x_j) \right)$$

22 LOSS FUNCTION

- The L_V has the minimum value for $q_i = q_{\min} + \epsilon \ \forall i$
- To enforce one condensation point per object, and none for background or noise vertices, the following additional loss term L_{β} is introduced : s_{B} : hyperparameter describing the

$$L_{\beta} = \frac{1}{K} \sum_{k} (1 - \beta_{\alpha k}) + s_B \frac{1}{N_B} \sum_{i}^{N} n_i \beta_i,$$

 S_B : hyperparameter describing the background suppression strength K: Maximum value of objects N_B : Number of background n_i : Noise tag (if noise, it equals 1.)

• The loss terms are also weighted by $\operatorname{arctanh}^2\beta_i$:

$$L_p = \frac{1}{\sum_{i=1}^N \xi_i} \cdot \sum_{i=1}^N L_i(t_i, p_i) \xi_i, \text{ with}$$
$$\xi_i = (1 - n_i) \operatorname{arctanh}^2 \beta_i.$$

 p_i : Featutes $L_i(t_i, p_i)$: Loss term (Difference between true labels and outputs of network)

• Accuracy = Number of hits with predicted label correctly Number of hits with true label

- Opening angle = 0.5 rad (the largest one)
- Event selection : events which include 2 clusters

Opening angle = 0.4 rad

Opening angle = 0.3 rad

Average = 99.30%

Opening angle = 0.2 rad

Opening angle = 0.1 rad (the smallest one)

COMPARISON BETWEEN PREDICTION AND TRUE LABEL

COMPARISON BETWEEN PREDICTION AND TRUE LABEL

·

COMPARISON BETWEEN PREDICTION AND TRUE LABEL

NUMBER OF CLUSTER IN EACH EVENT(JUST 100 EVENTS)

