

Graph Neural Network Jet Flavor Tagging at ILC

2nd general meeting of ILC-Japan Physics Working Group

2022/02/22

<u>T. Onoe^A</u>, T. Suehara^A, K. Kawagoe^A, T. Yoshioka^A, H. Nagahara^B, Y. Nakashima^B, N. Takemura^C (Kyushu Univ.^A, Osaka Univ.^B, Kyushu Institute of Technology^C)

Jet Flavor Tagging

- Important to identify quarks (b/c/g/uds) of the origin of the jets. e.g., Separation of $h \rightarrow b\overline{b} / c\overline{c} / q\overline{q} / ...$
- Ratio of background can be eliminated determines the limits of analysis cut
- Bottom (b) and charm (c) flavor hadrons have weak interaction
 - \rightarrow b/c hadrons have finite decay lengths
 - \rightarrow Can be identified by finding vertices

Fig. Monte Carlo simulation of the jet near the IP

Current method of flavor tagging

- 1. Vertex Finder : Find vertices by cut-based fitting
- 2. Jet Clustering : Reconstruct jets by clustering particles
- 3. Flavor Tagging : Classify jets as b/c/others by Boosted Decision Trees(BDTs)

Purpose of this study

Challenges for LCFIPlus

- 1. The complexity of trees is limited
 - → Cannot express jet representation enough for flavor tagging with low-level input.
- 2. Fitting calculation of vertex is performed for all track pairs
 - \rightarrow Large amount of time cost for computing

Purpose of this study

- 1. By implementing Deep Learning, create a model that can represent jets more suitable for better accuracy and efficiency in terms of time
- 2. From some training approach, implement flavor tagging with low-level input.

Deep Learning (Deep Neural Network; DNN)

- Learning data features \rightarrow High prediction accuracy for unknown data
- supervised learning on data with answers
- Deep Learning has complex expressions and good scalability
- Various networks and calculation methods exist

h(

 w_1

$$y = h(x_1w_1 + x_2w_2 + b)$$

x : input w : weight b : bias a : linear sum h() : non-linear function y: output

 x_2

Data information for DNN

Prepare data

• 4 million events data from ILD full simulation (250GeV, bb:cc:qq = 1:1:4)

 $[e^+e^- \to \nu\bar{\nu}h \to \nu\bar{\nu}b\bar{b}/c\bar{c}/q\bar{q} \ (q = u, d, s)]$

42 variables from vertex finder is used for training

(e.g., number of vertices, position/mass/probability etc.)

Preprocessing

By transformation of the variable, the distribution of input variables should be flattened and scaled.

Fully-connected neural network

Training

- Fully-connected neural network (simplest structure)
- Apply batch normalization for each layer
- Output: probability for each label (b/c/uds-likeness)
- Hyperparameters
 - Number of nodes: 512
 - Loss function: Categorical cross entropy
 - Optimization algorithm: RAdam (learning rate 0.001)
 - Number of epochs: 100

Hyperparameter tuning

- Hyperparameters
 - ... Variables to determine the behavior of training
 - \rightarrow Usually tuned manually within reasonable ranges
- We optimize these parameters by **Bayesian optimization**
- Bayesian optimization in hyperparameter tuning
 - ... Define the objective function with hyperparameters as arguments Assuming it follows a multivariate Gaussian distribution Estimate the objective function by Gaussian process regression

- × : Observed data
 - : Estimated width

x

Evaluation of DNN

Tagging	background	Mis-id fraction	
efficiency = 0.8		LCFIPlus	DNN
<i>b</i> jet	c jet	0.073	0.088
	uds jet	0.007	0.023
c jet	<i>b</i> jet	0.22	0.13
	uds jet	0.24	0.28

- Didn't completely outperform LCFIPlus
- Aiming to improve accuracy by changing method of learning

Graph Data Approach

Concept

Data is represented as a graph

→ Graph structure data can contain interrelationship by connections
 (Fully-connected neural network has no specific relation between nodes)
 → Reduced loss of information when compared to physical phenomena

 \rightarrow High accuracy of identification is expected

Training Data information

- Data
- 240,000 jets of 250 GeV ILD full simulation data $[e^+e^- \rightarrow v\bar{v}h \rightarrow v\bar{v}b\bar{b}/c\bar{c}/q\bar{q} \ (q = u, d, s)]$
- Build one graph per one jet
- Define the tracks as nodes in the graph
- Edges connect between track pairs

Track Input	
d ₀	Longitudinal distance from track to IP
φ	Azimuthal angle of track
ω	the curvature of the track
$\mathbf{z_0}$	Transverse distance from track to IP
tan λ	dz/ds in sz plane
$\sigma(\mathbf{d_0})$	Uncertainty of d ₀
$\sigma(z_0)$	Uncertainty of z ₀

Fig. example of a jet as a graph

Graph Training and GAT

- How to train with graph data (Graph Neural Network; GNN)
 ... Aggregate features from neighboring nodes and update
- We suggest Graph Attention Network (GAT), a GNN with attention mechanism
- <u>Attention mechanism</u> ... Learn the importance score for each weight Take as a coefficient for update parameter.
- \rightarrow Aimed by attention expressing whether tracks has the same vertex.

Training and Network architecture

- Node classification means the origin of tracks as vertices
- Link prediction means whether to form a vertex
- Graph classification means jet flavor tagging
- Loss function

 $L_{total} = L_{Flavor} + \frac{\alpha L_{Vertex}}{\alpha} + \frac{\beta L_{Edge}}{\beta} L_{Edge}$ $(\alpha \cong 3, \beta \cong 1)$

Node classification

l ink	pred	iction
	Pi OG	

Label	Description
PV	From primary vertex
SVBB	From secondary vertex of b
SVCC	From secondary vertex of c
тисс	From tertiary vertex of b
Others	From another particle

Label		Description	
Connect	ed	tracks are connected	
Not-conne	cted	tracks are not connected	
Graph C	lass	ification	
Label	Description		
bb	the final state of $b\overline{b}$		
cī	the final state of $c\overline{c}$		
$q\overline{q}$	the final state of $q\overline{q}$ (q = u, d, s)		

Network architecture

Input				
	Fully-connected Layer			
Graph Attention Layer				
Batch Normalization				
	LeakyReLU			
Graph Attention Layer				
Batch Normalization				
LeakyReLU				
Graph Attention Layer				
Batch Normalization				
LeakyReLU				
	Edge Index concat	Pooling		
Fully-connected Layer				
Output (Softmax)	Fully-connected Layer	Fully-connected Layer		
	Output (Softmax)	Output (Softmax)		
Node classification	Link prediction	Graph classification		
Track classification	Vertex Finder	Flavor Tagging		

Result of GNN

- Not much classification of TVCC and SVCC
- Edge connection is not good
- As a graph, we got better accuracy than nodes and edges

Evaluation of GNN

Tagging	background	Mis-id fraction	
efficiency = 0.8		LCFIPlus	GNN
<i>b</i> jet	c jet	0.073	0.021
	uds jet	0.007	0.015
c jet	<i>b</i> jet	0.22	0.40
	uds jet	0.24	0.14

For b jet, the ratio of c jet background is reduced.

- For c jet, the ratio of uds jet background is reduced.
- Integrated of Flavor Tagging with Vertex Finder → Implementation with low-level of input than LCFIPlus

Summary

Conclusion

- Jet flavor tagging is important for Higgs studies on ILC
- We developed the algorithm of jet flavor tagging by Graph Neural Network
 - \checkmark Performance improved for some type of jets
 - \checkmark Time cost of computation improved
 - ✓ Integrated of Flavor Tagging with Vertex Finder

Discussion

Not sufficiently classification about nodes and edges

- Review input data preprocess
- Edge features can improve accuracy (from Vertex Fitter)
- Understand how out attention is working
- Another network model is better?

Backup

xy, sz coordinate

Flavor Tagging Efficiency 補足

分類問題における出力 (softmax関数) は、確率値に正規化

(例) (b probability, c probability, uds probability) = (0.7, 0.2, 0.1)

Tagging Efficiency は判定の閾値を変え、残る割合を表す

 \rightarrow b-tag Efficiency = (閾値を超えてbと判断されたジェット) / (全てのbジェット)

ハイパーパラメータ最適化

• 探索を行ったパラメータは右表

図. 各試行における目的関数(損失関数)の値

	変数名	最適化範囲
	中間層のノード数	[32, 64, 128, 256, 512, 1024]
	ドロップアウト	$0.1\sim 0.9$
	LeakyReLU	$\left[0.00001, 0.0001, 0.001, 0.01, 0.1\right]$
٢	学習率	$\left[0.00001, 0.0001, 0.001, 0.1\right]$
	eta_1	$0.5\sim 0.9$
\prec	eta_2	$0.5\sim 0.9$
	eps	$[10^{-9}, 10^{-8}, 10^{-7}]$
L	weight decay	$\left[0.000001, 0.0001, 0.001, 0.01, 0.1\right]$

RAdamに関する

パラメータ