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Jet Flavor Tagging

Fig. Jets around IP
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• Important to identify quarks (b/c/g/uds) of the origin of the jets.
e.g., Separation of ℎ → 𝑏$𝑏 /𝑐 ̅𝑐/𝑞)𝑞/...

• Ratio of background can be eliminated determines the limits of analysis cut
• Bottom (b) and charm (c) flavor hadrons have weak interaction 

→ b/c hadrons have finite decay lengths
→ Can be identified by finding vertices

Fig. Monte Carlo simulation of the jet near the IP



Current method of flavor tagging
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1. Vertex Finder : Find vertices by cut-based fitting
2. Jet Clustering : Reconstruct jets by clustering particles
3. Flavor Tagging : Classify jets as b/c/others by Boosted Decision Trees(BDTs)

LCFIPlus paper: NIM A 808 (2016) 109-116
Source codes: https://github.com/lcfiplus/LCFIPlus

https://github.com/lcfiplus/LCFIPlus
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Purpose of this study
Challenges for LCFIPlus

1. The complexity of trees is limited
→ Cannot express jet representation enough for flavor tagging 

with low-level input.
2. Fitting calculation of vertex is performed for all track pairs

→ Large amount of time cost for computing

Purpose of this study
1. By implementing Deep Learning, create a model that can represent jets    

more suitable for better accuracy and efficiency in terms of time
2. From some training approach, implement flavor tagging with low-level input.



Deep Learning (Deep Neural Network; DNN)
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• Learning data features → High prediction accuracy for unknown data
• supervised learning on data with answers
• Deep Learning has complex expressions and good scalability

• Various networks and calculation methods exist

Fig. Fully-connected neural network

Fig. Overview of computation in a neural network

𝑥 ∶ input
𝑤 ∶ weight
𝑏 ∶ bias
𝑎 ∶ linear sum
ℎ() : non-linear function
𝑦: output Fig. Recurrent neural network

Fig. Convolution neural network𝑦 = ℎ(𝑥$𝑤$ + 𝑥%𝑤% + 𝑏)
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Data information for DNN

・ 4 million events data from ILD full simulation (250GeV, bb:cc:qq = 1:1:4)
[ 𝑒&𝑒' → 𝜈�̅�ℎ → 𝜈�̅�𝑏L𝑏/𝑐 ̅𝑐/𝑞L𝑞 (𝑞 = 𝑢, 𝑑, 𝑠)]

・ 42 variables from vertex finder is used for training
(e.g., number of vertices, position/mass/probability  etc.) 

Prepare data

Preprocessing
By transformation of the variable, the distribution of input variables 
should be flattened and scaled.

Logarithmic 
transformation

Vertex mass log!"(Vertex mass + 1)



Fully-connected neural network

Fig. Network architecture
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Training
• Fully-connected neural network (simplest structure)

• Apply batch normalization for each layer

• Output: probability for each label (b/c/uds-likeness)

• Hyperparameters
- Number of nodes：512
- Loss function：Categorical cross entropy
- Optimization algorithm：RAdam (learning rate 0.001)
- Number of epochs：100
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Hyperparameter tuning
• Hyperparameters

... Variables to determine the behavior of training
→ Usually tuned manually within reasonable ranges

• We optimize these parameters by Bayesian optimization

• Bayesian optimization in hyperparameter tuning
... Define the objective function with hyperparameters as arguments

Assuming it follows a multivariate Gaussian distribution
Estimate the objective function by Gaussian process regression

Fig. Search for the objective function (blue line) in two variables

Observed data

Estimated width



Evaluation of DNN
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LCFIPlus DNN LCFIPlus DNN
b tag effcicency with background c tag effcicency with background

• Didn’t completely outperform LCFIPlus
• Aiming to improve accuracy 

by changing method of learning

good

good

bad
bad

Tagging 
efficiency = 0.8 background

Mis-id fraction
LCFIPlus DNN

𝑏 jet
𝑐 jet 0.073 0.088
𝑢𝑑𝑠 jet 0.007 0.023

𝑐 jet
𝑏 jet 0.22 0.13
𝑢𝑑𝑠 jet 0.24 0.28



Graph Data Approach

Fig. example of a jet as a graph
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Concept
Data is represented as a graph
→ Graph structure data can contain interrelationship by connections

(Fully-connected neural network has no specific relation between nodes)
→ Reduced loss of information when compared to physical phenomena 
→ High accuracy of identification is expected

Fig. Event display of Monte-Carlo simulation



Training Data information
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• 240,000 jets of 250 GeV ILD full simulation data
[ 𝑒9𝑒: → 𝜈�̅�ℎ → 𝜈�̅�𝑏)𝑏/𝑐 ̅𝑐/𝑞)𝑞 (𝑞 = 𝑢, 𝑑, 𝑠)]

• Build one graph per one jet
• Define the tracks as nodes in the graph
• Edges connect between track pairs

Data

Track Input
𝐝𝟎 Longitudinal distance from track to IP 
𝛟 Azimuthal angle of track
𝛚 the curvature of the track
𝐳𝟎 Transverse distance from track to IP 
𝐭𝐚𝐧𝛌 dz/ds in sz plane
𝝈(𝐝𝟎) Uncertainty of 𝐝𝟎
𝝈(𝐳𝟎) Uncertainty of 𝐳𝟎 Fig. example of a jet as a graph

: one track

: connect track pairs
(can be a vertex)



Graph Training and GAT
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• How to train with graph data  (Graph Neural Network; GNN)
... Aggregate features from neighboring nodes and update

• We suggest Graph Attention Network (GAT) , a GNN with attention mechanism
• Attention mechanism ... Learn the importance score for each weight

Take as a coefficient for update parameter.
→  Aimed by attention expressing whether tracks has the same vertex.

Fig. Graph Attention NetworkFig. Graph Training

arXiv [1710.10903]



Training and Network architecture
• Node classification means the origin of tracks as vertices
• Link prediction means whether to form a vertex
• Graph classification means jet flavor tagging
• Loss function

𝐿()(*+ = 𝐿,+*-). + 𝑎𝐿/0.(01 + 𝛽𝐿2340
(𝛼 ≅ 3, 𝛽 ≅ 1)

Network architecture
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Node classification Link prediction

Graph Classification

Label Description

Connected tracks are connected

Not-connected tracks are not connected

Label Description
𝒃'𝒃 the final state of 𝒃'𝒃
𝐜)𝒄 the final state of 𝐜)𝒄
𝒒'𝒒 the final state of 𝒒'𝒒

(𝒒 = 𝒖, 𝒅, 𝒔)

Label Description

PV From primary vertex

SVBB From secondary vertex of b

SVCC From secondary vertex of c

TVCC From tertiary vertex of b

Others From another particle
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Result of GNN
Node classification Link prediction Graph classification

• Not much classification of TVCC and SVCC
• Edge connection is not good
• As a graph, we got better accuracy than nodes and edges 



Evaluation of GNN
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LCFIPlus Graph Approach LCFIPlus Graph Approach
B tag effcicency with background C tag efficiency with background

• For b jet, the ratio of c jet background is reduced.
• For c jet, the ratio of uds jet background is reduced.

• Integrated of Flavor Tagging with Vertex Finder
→ Implementation with low-level of input than LCFIPlus

Tagging 
efficiency = 0.8 background

Mis-id fraction

LCFIPlus GNN

𝑏 jet
𝑐 jet 0.073 0.021

𝑢𝑑𝑠 jet 0.007 0.015

𝑐 jet
𝑏 jet 0.22 0.40

𝑢𝑑𝑠 jet 0.24 0.14



Summary
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- Jet flavor tagging is important for Higgs studies on ILC
- We developed the algorithm of jet flavor tagging 

by Graph Neural Network

ü Performance improved for some type of jets
ü Time cost of computation improved
ü Integrated of Flavor Tagging with Vertex Finder

Not sufficiently classification about nodes and edges
Ø Review input data preprocess
Ø Edge features can improve accuracy (from Vertex Fitter)
Ø Understand how out attention is working
Ø Another network model is better?

Discussion

Conclusion
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Backup
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xy, sz coordinate 

xy coordinate Sz coordinate
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Flavor Tagging Efficiency 補足
• 分類問題における出力 (softmax関数) は、確率値に正規化

(例) (b probability, c probability, uds probability) = ( 0.7, 0.2, 0.1 )

• Tagging Efficiency は判定の閾値を変え、残る割合を表す

→ b-tag Efficiency = ( 閾値を超えてbと判断されたジェット ) / (全てのbジェット)
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ハイパーパラメータ最適化

• 探索を行ったパラメータは右表

RAdamに関する
パラメータ

図. 各試行における目的関数(損失関数)の値 図. 𝛽!, 𝛽"に対する目的関数の値分布


