Higgs self-coupling measurement at ILC.

Status and overview

Julie Munch Torndal January 17, 2023

Quick overview

Past analysis:

DESY-THESIS-2016-027

$$\frac{\Delta \lambda_{HHH}}{\lambda_{HHH}} = c \cdot \frac{\Delta \sigma_{HHx}}{\sigma_{HHx}}$$

cross section measurement

Precision reach

After full ILC running scenario ($HH \rightarrow bbbb + HH \rightarrow bbWW$)

$$ightarrow \Delta \sigma_{
m ZHH}/\sigma_{
m ZHH} = 16.8\%$$
 (ILC500)

$$\rightarrow \Delta \lambda_{\rm SM}/\lambda_{\rm SM} = 26.6\%$$
 (ILC500)

$$\rightarrow \Delta \lambda_{\text{SM}}/\lambda_{\text{SM}} = 10\% \text{ (ILC500+ILC1000)}$$

Past talks:

- IDT Open Meeting on the Higgs self-coupling
- First ECFA workshop on e+e- Higgs/EW/Top Factories

Analysis strategy

Event reconstruction

Overlay removal

- $> \gamma \gamma \to \mathsf{low-}p_{\mathcal{T}}$ hadrons
- > Expect $\langle N_{overlay} \rangle = 1.05$ particles/event

Isolated lepton tagging

> identify leptons for selection or rejection

Jet reconstruction

> cluster together remaining event

Flavor tagging

> look for b-jets

Event selection

Cut-based preselection

- > ZHH $\rightarrow \ell\ell$ bbbb
- > ZHH $\rightarrow \nu \nu bbbb$
- > ZHH \rightarrow qqbbbb

Kinematic fitting

hypotheses testing to separate ZHH from ZZH background

Event selection

> based on MVAs

Code on github

Github repository

LeptonPairing

- closest to Z-mass + opposite charge requirement
- followed by BS/FSR recovery

Preselection

- 3 hardcoded preselections
- Option to customize cuts

Lepton channel

Selection

Initial $\#\ell_{ISO}>=2$ $|M_{\ell\ell}-M_Z|<40~{\rm GeV}$ $|M_{jj}-M_H|<80~{\rm GeV}$ $60~{\rm GeV}< M_{jj}<180~{\rm GeV}$ $p_{T}<70~{\rm GeV}$ thrust <0.9

Neutrino channel

Selection

Initial $\#\ell_{ISO} = 0$ $|M_{jj} - M_H| > 80 \text{ GeV}$ bmax3 > 0.2 60 GeV < $M_{jj} < 180 \text{ GeV}$ 10 GeV < $p_{T} < 180 \text{ GeV}$ thrust < 0.9 $E_{\text{vis}} < 400 \text{ GeV}$ M(HH) > 220 GeV

Hadron channel

Selection

 $\#\ell_{ISO} = 0$ ${\rm btag} > 0.16$ $60~{\rm GeV} < M_{jj} < 180~{\rm GeV}$ $p_{T} < 70~{\rm GeV}$ ${\rm thrust} < 0.9$