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LCFI+ (vertexing)
LCFI+ (Taikan Suehara, Tomohiko Tanabe; arXiv:1506.08371) :

∘ Vertex finder:
▸ Reconstruct collinear or close-to-collinear vertexes by merging particle tracks from the event information. 
▸ Distance (τq·c) from the IP is key for b and c quark ID: Displaced vertexes.
▸ We also encounter single track vertexes: pseudo-vertexes.
▸ There are more details to select the tracks used for quark id.

– e.g. V0 rejection for neutral particles.
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LCFI+ (jet clustering)
LCFI+ (Taikan Suehara, Tomohiko Tanabe; arXiv:1506.08371) :

∘ Jet Clustering:
▸ Use the vertexing information.
▸ Different algorithms could be used (kT, Durham, VLC, etc.).
▸ In our case, we expect two back-to-back jets with ISR:

IP

ISR

b-hadron
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TMVA in LCFI+
● Most of the variables used in the TMVA are derived from d0, z0, the number of vertexes, the 

number of pseudo-vertexes and other kinematical variables (like r-phi plane or pT).

∘ e.g. b-quark probability in d0 values for all tracks. 
● Classification in categories:

∘ The training is performed 4 times (A, B, C, D), in a single run , with different selection of 
vertexing and single track pseudo-vertexing.
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● Iterative method to optimise a machine learning classification.

∘ In our case, to optimise the multi-class BDT (Boosted Decision Tree) used for 
flavour tagging in LCFI+ (see back-up for more).

● The final goal is to obtain new weights for b-tagging and c-tagging.

∘ Ideally, these would have the best performance, while avoiding overtraining. 

● We checked qq simulated events at different energies:

∘ 250 GeV: Small samples for a first testing.

∘ 500 GeV: Big samples (new simulations), main working horse.

Particle Swarm Optimization (PSO) 

1 optimization per 
LCFI+ category
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Boosted Decision Trees (BDT) - TMVA
● We are already working with these Gradient Boosted Decision trees using ROOT’s 

Toolkit for MultiVariate data Analysis (TMVA). We use the following parameters:

∘ BoostType=Grad.

∘ NTrees.

∘ Shrinkage.

∘ UseBaggedBoost:BaggedSampleFraction.
▸ Bagging: A new sampling is performed before each step (removes biases). 

∘ NCuts (binning used when sampling). 

∘ MaxDepth (Nº of leaves).

 
The Particle Swarm Algorithm optimizes the use of these parameters

We used all but the orange ones, which are method definitions
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● Particle Swarm Optimization is a Gradient-free, bio-inspired, stochastic, 
population-based algorithm to optimize any kind of process towards a 
certain goal:

∘ No maths involved in the optimization (no gradients or loss functions!).

∘ It just try configurations and saves the best-performing one.
▸ It mimics how animals look for resources, by trial and error.

● How it works:

∘ We have N “particles” (in our case: configurations of the BDT). Then:

1) The BDT runs with the configuration of the particle.

2) When finished, each particle gets a performance score. 

-We define a Function Of Merit (FOM) for this scoring

3) We track each particle’s best configuration and the best global one.

4) The particles move to a new configuration (next slide). 

PSO - Overview

For each iteration

Image taken from a website 

https://medium.com/@iamterryclark/swarm-intelli-eb5e46eda0c3
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PSO - Overview

Position:

Velocity:

Inertia direction

Global best direction

Personal best direction

Total velocity

Old position

New position
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● We need:

∘ A 3-class classifier (b quarks, c quarks, uds quarks).

∘ We also want to avoid overfitting:
▸ Kolmogorov-Smirnov test
▸ Anderson-Darling test

∘ We need a FOM adapted to 3 different classes.

∘ Important remark: A final check is always needed:

PSO – Adaptation to FT in LCFI+

Control biased test scores. (more info in back-up) 

Trial and error can go wrong sometimes! 
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● The FOM being used is the averaged value of the Integral 
of the Receiver Operating Characteristic curve for each of 
the 3 data classes.

∘ Considering the target class as signal and the others 
as background.

● Our FOM is simply:

FOM = ( AUC[bquark] + AUC[cquark] + AUC[udsquarks] ) / 3,

 where AUC = ”Area Under Curve” (ROC Integral).

PSO – Function Of Merit (FOM)
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20 fb-1  (2.5 M events)

● On the next slides:

∘ Plots for b-tag and c-tag:
▸ ROC, considering the desired flavour as signal and the others as 

background.
– Also approximated AUC (ROC Integral) values to compare

▸ Purity vs Efficiency. 

∘ Luminosities:

PSO – Performance plots 

e-
L e+

R

e+
R e+

L

250 GeV Test + Training (50/50) Sample for plots

PSO

36 fb-1  (2.5M events) 2.8 fb-1  (200 K events)

250 fb-1  (1.2M events)

480 fb-1  (1.5M events)

e-
L e+

R

e+
R e+

L

500 GeV Test + Training (50/50) Independent sample for plots

1430 fb-1  (7.0 M events)

1060 fb-1  (3.2 M events)

PSO (pol. test)

1.6 fb-1  (200 K events)
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PSO Performance (250 GeV)

[Integrals 2f250] e-
L: 0.971 | e-

R: 0.973
[Integrals PSO] e-

L: 0.973 | e-
R: 0.976

[Integrals 2f250] e-
L: 0.898 | e-

R: 0.902
[Integrals PSO] e-

L: 0.901 | e-
R: 0.904
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PSO Performance (250 GeV)



15Jesús P. Márquez Hernández - ILD SW&ANA  18/01/23

PSO Performance (500 GeV)

[Integrals 2f250] e-
L: 0.972 | e-

R: 0.971
[Integrals PSO] e-

L: 0.974 | e-
R: 0.974

[Integrals 2f250] e-
L: 0.917 | e-

R: 0.917
[Integrals PSO] e-

L: 0.925 | e-
R: 0.925
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PSO Performance (500 GeV)
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Polarization dependence (500 GeV)

Minimal impact when training with sets of specific polarization

Only left-handed weights Both pol. weights
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Polarization dependence (500 GeV)

Minimal impact when training with sets of specific polarization

Only left-handed weights Both pol. weights
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PSO Performance - Conclusions
● We can notice:

∘ An improvement in b-tag and c-tag for all categories and in the global performance.

∘ The impact in efficiency if we train for different polarizations is very small.
▸ The impact of the general PSO optimization is way greater.

● Now we are going beyond this optimization by introducing new variables in LCFI+.

∘ Observables derived from dEdx (next slides).
▸ Work in progress!
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Using dEdx for flavour tagging
● We will study the distance of different tracks wrt Kaon dE/dx:

∘ 1 pfo in a single track           1 particle energy trace (Bethe-Bloch formula).

∘ Our .lcio files already have an estimation of the distance between a given track 
and the estimated for a given particle (Kaon, pion, etc.).

▸ This distance is not always a good estimation: we have to preselect first a 
region in momenta in which this measurement is consistent.

● Once the distance is proved to be somehow useful to distinguish different particles:

∘ Building new observables useful for flavour tagging! 
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dEdx – Momentum distribution

There’s a high population at low momentum and below 3 GeV the distributions overlap!
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dEdx – Cut in tracks’ momentum

Effects of cutting the signals at 3 GeV. This behavior is similar to b and c jets.
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dEdx – Kaon Distance Significance (KDS)

Effects of cutting the signals at 3 GeV, removing pfos with 1dkaon = 0 & |cosθ| < 0.95
1. A peak appeared at d=0. Probably an initialization issue

 in dEdxKaonDistance. Plots in back-up slides. 
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We can differentiate between primary and secondary vertexes

dEdx – KDS in primary and secondary vtx.
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● Now that we have some hints about differences in pfos’ dEdx distributions we need:

∘ Distributions that allow an inference about the content of 1 single jet.

● On the next slides we will see:

∘ Histograms of untagged pfos’ dEdx distance to kaon’s dEdx experimental expected 
value.

▸ Also, histograms for one a priori classification of pfos according to such distance: 
negative, null or positive distance.

– I called these particles “Estimated protons, kaons or pions”.

∘ Observables using ratios between these estimated particles: 
▸ Estimated K/p.
▸ Estimated π/p.
▸ Estimated π/K. 

dEdx – Moving to real observables 

Jet by Jet!
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dEdx – KDS for different quark flavours
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dEdx – KDS classification
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The “5σ version” seems to work slightly better

dEdx – KDS classification comparison
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dEdx – Next moves
● Now that we have checked these variables it’s time to implement them to LCFI+:

∘ We have a total of 6 new variables per category (3 ratios for primary and 
secondary vertexes).

● Working on it!

∘ Trying to implement it following the inner structure of LCFI+ and minimizing 
incompatibilities.

● Once finished: 

∘ We will check the impact on these parameters in the PFO optimised weights.

Working in progress!
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Thanks for your attention!
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Back-up
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d0

LCFI+ (impact parameters)

ISR

b-hadron

IP

z0

d0: Transverse impact parameter
z0: Longitudinal impact parameter
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Events for each category

Without ISR removal

Z-Pole (LCFI+ paper1) 250 GeV samples 500 GeV samples

1. LCFIPlus: A Framework for Jet Analysis in Linear Collider Studies

arxiv:1506.08371
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Events for each category

With ISR removal

Z-Pole (LCFI+ paper1) 250 GeV samples 500 GeV samples

1. LCFIPlus: A Framework for Jet Analysis in Linear Collider Studies

arxiv:1506.08371
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TMVA in LCFI+ (variables)
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TMVA in LCFI+ (variables)
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● A decision tree is a weak learner (an estimator): It classifies your data according to 
certain/s question/s (nº of leaves).

● Boosting is using many of these trees one after each other until you get a final 
classification.

∘ Gradient Boosting is the most common one (and the one I’m using):

▸ Where F is the total prediction, h the prediction of a tree, and η is the learning 
rate (or shrinkage). 

– Each of the trees actually perform its classification using the gradient of 
the loss function of the previous one, so it keeps “refining” the result.

Boosted Decision Trees (BDT) - Overview

Fm(x) = Fm-1(x) + η·hm(x), 0 < η ≤ 1 
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Boosted Decision Trees (BDT) - Overview
● Simple visual representation1:

1. Website (Bradley Boehmke & Brandon Greenwell): https://bradleyboehmke.github.io/HOML/gbm.html
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● I didn’t start from scratch, but rather adapted Andrej Saibel’s code. This code:

∘ Is a signal-background classifier (2 classes).
▸ Uses ROOT’s classes that are optimal to Signal-vs-Background classifiers.

∘ Includes nTuples variables as extra parameters to play with.
▸ Optimizes the use of physical variables as well.

∘ Includes a test to avoid overfitting (Kolmogorov-Smirnoff test).

∘ Includes different types of FOM to choose from.

∘ Was originally prepared to run in CMS computing services.
▸ There are different codes interacting in Python, C (C++) and bash; to prepare the 

particles, executing them, read the results and update their new configurations.

PSO – Implementation - Origin

https://github.com/Andrej-CMS/ParticleSwarmOptimization
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● Compare how likely there is that two different empirical distributions 
(histograms) came from the same underlying distribution function.

∘ It uses the max. distance between the cumulative probability(CPD) 
of both histograms:

∘ Then, we past a test for such distance to a certain degree of 
significance level α (usually 0.05):

∘ The output is a p-value which determine how likely it is that both 
histograms came from the same distribution according to our 
significance level (e.g. 0.05 stands for 95% of agreement).

PSO – Kolmogorov-Smirnov Test

Notice how a big jump in the CPD even in a very narrow region will lead to a very high 
distance (low KS score): Hyper-sensibility if the distributions are not smooth enough
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● The AD test statistic is defined as:

● Where:

● Being F the cumulative probability distribution for a certain distribution (or the other 
sample in our 2-samples scenario).

∘ Works better with uniform distributions and higher binning.
● Again, the output is an estimator based on a cut in A>Acritical

PSO – Anderson-Darling Test

Notice how this kind of testing avoid the hyper-sensibility that we had in narrow jumps in the 
CPD but what if one of these jumps in CPD is actually relevant?

I chose very conservative (and secure) way to proceed: Applying both tests!
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PSO Performance (500 GeV) – Cat. A
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PSO Performance (500 GeV) – Cat. B
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PSO Performance (500 GeV) – Cat. C
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PSO Performance (500 GeV) – Cat. D
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F1 score & maximum purity (500 GeV)
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Using dEdx for flavour tagging

We differentiate between primary & secondary tracks
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Using dEdx for flavour tagging

We differentiate between primary & secondary tracks
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Using dEdx for flavour tagging

Effects of cutting the signals at 3 GeV, first attempt
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Using dEdx for flavour tagging

Effects of cutting the signals at 3 GeV, removing very forward/backward pfos
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Using dEdx for flavour tagging

Effects of cutting the signals at 3 GeV, removing pfos with dkaon = 0
Probably an initialization issue

 (in dEdxKaonDistance) 
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