RF DIPOLE DESIGN UPDATE

Suba De Silva Jean Delayen, Bob Rimmer

Center for Accelerator Science

Old Dominion University

and

Thomas Jefferson National Accelerator Facility

Outline

- Electromagnetic Design
 - RF Parameters
- Higher order modes and impedances
 - Transverse impedances
 - Longitudinal impedances and loss factor
- Multipole Analysis
- Stress Analysis
- Conceptual cryomodule layout
- Cavity fabrication sequence
- Summary

1.3 GHz RFD Cavity Design

- Optimized the pole shape (pole height and length):
 - To achieve peak surface field requirements of $E_p < 45$ MV/m and $B_p < 80$ mT

	250 GeV	1 TeV
Max V _t per cavity [MV]	1.35	1.35
Total V _t [MV]	1.845	7.4
Number of cavities	2	6
V _t per cavity [MV]	0.9225	1.234
V _{t,max} / V _{t,operational}	1.46	1.09

Cavity Dimensions (rf volume)	Value
Pole separation [mm]	25
Beam aperture [mm]	50
Cavity Length [mm] (flange-to-flange)	310
Cavity Diameter [mm]	99.4
Pole Length [mm]	85
Pole Height [mm]	31.5
Angle [deg]	22.5

Property	Value
Operating frequency [GHz]	1.3
1 st HOM [GHz]	2.089
$E_{\rm p}/E_{\rm t}^*$	3.76
$B_{\rm p}/E_{\rm t}^*$ [mT/(MV/m)]	6.80
$B_{\rm p}/E_{\rm p}$ [mT/(MV/m)]	1.80
G [Ω]	129.54
<i>R</i> / <i>Q</i> [Ω] (V ² /P)	440.4
$R_{\rm t}R_{\rm s} \left[\Omega^2\right] ({\rm V}^2/{\rm P})$	5.70×10 ⁴
[*] Reference length $V/E_t = \lambda/2$ [mm]	115.3
V _t max per cavity [MV]	1.35
E _p [MV/m]	44.2
<i>B</i> _p [mT]	79.6
V _t per cavity [MV] (@ 125 GeV)	0.9225
Stored energy (U) [J]	0.125
$P_{\rm diss}$ [W] (for $R_{\rm s}$ = 30 n Ω)	0.45
Q_0 (for $R_s = 30 \text{ n}\Omega$)	4.3×10 ⁹

Higher Order Mode Damping

Transverse HOM Impedances

- Pole separation = 25 mm and beam aperture = 50 mm
- Total impedance threshold (requirements): $Z_x = 48.8 \text{ M}\Omega/\text{m}$ and $Z_y = 61.7 \text{ M}\Omega/\text{m}$
- Impedance threshold per cavity: $Z_x = 8.13 \text{ M}\Omega/\text{m}$ and $Z_y = 10.28 \text{ M}\Omega/\text{m}$ (6 cavities)
- Impedance threshold per cavity: $Z_x = 24.4 \text{ M}\Omega/\text{m}$ and $Z_y = 30.85 \text{ M}\Omega/\text{m}$ (2 cavities)
- Well damped HOMs with margin
 - Simulated with dummy coax absorbers
 - Since there is a large margin will explore damping with two HOM dampers

• Impedances calculated using circuit definition

Longitudinal Impedances and Loss Factor

- Longitudinal wakefield for a short-range wake of 50 mm for several bunch lengths
- Simulated with CST

Jefferson Lab

• Extrapolated loss factor for the ILC bunch length $\sigma_z = 0.3$ mm $\rightarrow 44 \text{ V/pC}$

Multipole Components

- Higher order multipole components for the bare cavity and cavity with FPC and HOMs
- Multipole components normalized to $V_t = 1 \text{ MV}$
- Calculated at a beam offset of 5 mm \rightarrow To reduce noise
- # of mesh points on the 5 mm cylinder 64

- No impact on b₃ and b₅ due to FPC & HOM dampers on the beam pipe
- FPC & HOM dampers impact the shift in electrical center

Component	No FPC &HOMs	With FPC & HOMs	
<i>V</i> _t [MV]	1.0		
<i>b</i> ₀ [mT/m²]	0.0	0.0	
<i>b</i> ₁ [mT/m]	3.34	3.34	
<i>b</i> ₂ [mT]	-1.0×10 ⁻³	-0.24	
<i>b</i> ₃ [mT m]	4377.3	4372.2	
<i>b</i> ₄ [mT m ²]	80.07	633.51	
<i>b</i> ₅ [mT m ³]	5.39×10 ⁶	5.47×10 ⁶	
<i>V</i> _z [V]	-7.0×10 ⁻⁴	-159.4	
Δ <i>x</i> [μm]	-1.7×10 ⁻⁴	-38.7	

Stress Analysis

- Analysis at 2.2 atm external pressure
- Nb material properties at room temperature
 - Reference JLAB-TN-09-002 C100 Cryomodule Niobium Cavity Structural Analysis
 - Young's modulus 82.7 GPa (1.2×10⁷ psi)
 - Poisson's ratio 0.38
- Cavity thickness 3 mm
- Boundary conditions Cavity constrained at beam pipes and FPC
- Allowable stress < 43.5 MPa
- Maximum stress is 25.1 MPa
- Initial analysis shows cavity doesn't require stiffening
- Cavity can be machined with varying thickness

Cavity Thickness [mm]	Max. Stress [MPa]
2.5 mm	32.6
3.0 mm	25.1

Conceptual He Vessel and Cryomodule Design

Two beamline separation At 1 TeV – Cryomodule required to fit in within 3.8 m • 14.049m x 0.014rad = 197mm H. Hayano 1-cell cavity • QDEX1S QFEX2AS CRAB 6 cavities in a single cryomodule QF1 SF1 QD0 SD0 ZVFONT 14.049m Second beam pipe – 20 mm beam pipe • Total achievable – 8.1 MV (1.24 MV V_{t} per cavity) 1-cell cavity • ~10% extra margin Design concept follows JLab C100 cryomodule Cryomodule length = 3.4 mCryomodule diameter = 0.82 m 3.4 m in 設備 **11 Center for** Jefferson Lab **Accelerator Science**

Cavity Fabrication Sequence

- Two fabrication options:
 - Machining out of Nb ingots
 - Better control over dimensions and tolerances
 - Reduced number of welds
 - Allows for variable thickness
 - Stamping and forming using Nb sheets
 - Well understood technology
 - Requires forming and machining dies
 - Also requires more fixturing to achieve tolerances

Option 1 – Machining Out of Nb Ingots

- Center body and end caps will be machined out of Nb ingots
- Beam pipe and HOM cans will be machined out of Nb tubes
- Parts of HOM dampers (Nb hook and probes) can be machined out of left over material from center body

Cavity Parts (Nb)	Dimensions [in]	Qty	Weight
Center body (tube)	Ø 4.5" × 5.6"	1	12.6 kg
End caps	Ø 4.5" × 1.2"	2	5.4 kg
Beam tube including HOM transitions	ID = 1.9" OD = 3.1" L = 4.5"	2	6.1 kg
HOM cans	ID = 1.5" OD = 1.85" L = 3.0"	3	1.8 kg
Total			25.9 kg

Option 2 – Forming Out of Nb Sheets

- All parts will be stamped using Nb sheets of 3 mm thickness
- Center body will be formed in two halves
- Sheet dimensions include additional length of 0.5"

Cavity Parts (Nb)	Sheet type	Dimensions [in]	Qty	Weight
Center body	Sheet	7.6" × 7.4"	2	1.9 kg
End caps	Disc	Ø 6.1"	2	1.0 kg
Beam tubes	Sheet	4.6" × 7.5"	2	1.2 kg
HOM cans	Sheet	4.0" × 6.2"	3	1.4 kg
HOM coupler and probes	Ingot	ID = 1.5" OD = 1.85" L = 3.0"	3	1.8 kg
Total				7.3 kg

Summary

- 1-cell cavity meets current specifications in:
 - Dimensional requirements, peak surface fields with required transverse voltage
 - Preliminary mechanical analysis is completed
- HOM damping:
 - Meets transverse impedance thresholds with wide margin
 - Further calculations on loss factor and transverse kick factors pending
- Initial cavity design is completed with FPC and HOM damping scheme
 - Next steps: Multipacting analysis on the full cavity including FPC and HOMs
- Remaining work for cavity prototyping
 - Full engineering analysis
 - Manufacturing plan

Back Up Slides

Multipacting Analysis

- Resonant particles traced for 50 rf cycles with impact energy 20-2000 eV
- Simulated for a 1/8th surface area

DMINION UNIVERSITY

Accelerator Science

Fundamental Power Coupler

- Coupling using coaxial antenna
 - Similar to LCLS II power coupler
- Beam current: $I_{\rm b}$ = 10 mA
- Beam offset: $\Delta x = 0.5 \text{ mm}$
- Microphonics: $\delta f = 50 \text{ Hz}$
- Cavity parameters:

	1-cell	2-cell	
<i>R</i> / <i>Q</i> [Ω]	444.8	895.6	
V _t per cavity [MV]	1.35	2.7	
Q _{ext}	1.5×10 ⁷		
RF Power at the cavity [W]	300	600	
RF heating at Cu probe [W]	1.2	2.22	

Summary from Design Review #2 (06/2022)

- Multipacting Analysis Completed for bare cavities
 - Need to complete the analysis for full cavity including FPC and HOMs

ullet

- Stress Analysis At 2 K
 - Well within allowable maximum stress of 43.5 Pa
 - For cavity thickness of 2.5 mm
- **Pressure Sensitivity** At RT
 - df/dP ≈ 730 Hz/mbar for
 2.5 mm cavity thickness

Jefferson Lab

- Lorentz Detuning At 2 K
 - *k*_L ≈ 7.44 [kHz/(MV)²] for
 2.5 mm cavity thickness

- Tuning Sensitivity At 2 K
 - Tuning range ≈ 1.96 MHz
 - 8.5 MHz/mm at 1.6 kN and 0.23 mm displacement per side

