

Timing sensor studies and application to Higgs factories in Japan

Taikan Suehara (ICEPP, U. Tokyo)

Contents

- Sensor technologies for picosec timing: activities in Japan
 - Silicon sensor (LGAD)
 - Scintillator/Cherenkov detectors (slides from W. Ootani)
- Application of timing measurements to Higgs factories
 - Pileup rejection?
 - Particle ID
 - Improving particle flow performance
 - Secondary photon ID
- Possible design of timing detector (and consideration)

Silicon sensors: factors contributing timing meas.

Timing resolution factors: $\sigma_t^2 = \sigma_s^2 + \sigma_n^2$

- σ_s^2 : Timing resolution of sensor itself
 - Landau Fluctuation: uncertainty caused by fluctuation of energy deposit along the sensor
 → ~10% of charge collection time
 Thin sensors and fast drifting time desired
- σ_n^2 : Uncertainty caused by electric noise
 - − Signal rise time divided by S/N ratio
 → thicker sensor desired (trade-off)
 - S/N ratio improved by avalanche gain \rightarrow LGAD (or SPAD)
 - $\sigma_n \sim C^2$ Capacitance affects both rise time and S/N ratio
- Other aspects: clock distribution, time walk, etc.

Avalanche Detectors (LGAD)

- Difficult to get high S/N with thin sensors
 → Avalanche gain
 - Already widely used in optical detectors (APD/SiPM)
 - Low Gain Avalanche Detector (LGAD)
 - Developed for HL-LHC pileup separation (ATLAS HGTD / CMS MTD)
 - G = 10-100, radiation tolerance OK (with increasing HV)
 - Finally dominated by Landau fluctuation
 (~30 psec with current structure) → Thinner active layer

- ----- d=200um, PAI sigma ---- d=50um, Landau r.m.s.
- --- d=50um, PAI r.m.s.
- ---- d=50um, PAI sigma

Various structures of LGADs

Reach-through LGAD

- Standard structure well investigated
- Resolution limited to 30 psec
- Issue: inactive region
 between channels → AC-LGAD / inverse

AC LGAD: AC-coupled electrodes with planar gain layer: good for strips K. Nakamura et al. working in Japan in FCC/EIC context Taikan S

Inverse LGAD (single sided)

- The same structure as reverse APD
- Current structure has 5-10 μm active thickness (confirmed with ion injection)
 - \rightarrow too thin (limited by the production process)
- Intrinsically low Landau Fluctuation
- Relatively flat multiplication expected (tbc)
- Lower cross talk than AC-LGAD expected (tbc)

Monolithic LGAD with SiGe process

Our study for inverse LGAD

- Commercial sensors (Hamamatsu APD)
 - Reach-through type: S3884 (1.5 mm ϕ , 10 pF) @ 183V
 - Inverse type: S8664-20K (2 mm ϕ , 11 pF) @ 420V

• Readout

- 3 GHz discrete amp (mini-circuit GALI-S66+)
- R&S RTO64 Oscilloscope
 2GHz analog bandwidth, 10 GSPS
- Irradiation
 - Beta from ⁹⁰Sr
 - Test beam

2 GHz oscilloscope

Waveforms with ⁹⁰Sr

Average of ~30 waveforms Smaller capacitance → faster rise time Subtle differences by RT and inverse APDs

S3884 (10 pF)

S8664-55 (80 pF)

S8664-30K (22 pF)

S8664-20K (11 pF)

Fitting of waveforms

Average waveform obtained with a few 100 waveforms (Synchronizing timing of 50% height of signal) 2. Fitting individual waveforms for amplitudes and timing by the average waveform 3. Evaluating deviation of timing between fitted spectra and waveforms • 20/50/80% height 4. Noise contribution estimated by adding pre-signal waveform to signal time window To be confirmed with test beam

Test beams: latest results to be analyzed

Previous TB (2021)

Latest TB (This month)

~3 GeV e- beam @ PF-AR (KEK)

660 MeV e- beam @ ELPH (Tohoku)

Big sensors (5 mm ϕ) big capacitance Slower digitizer

Dominated by jitter with noise

Smaller sensors (1.5/2 mm φ) Latest setup

5 boards (1 for trigger) inside

APD sensor	Cut of charge	Timing resolution
S8664-50K (Inverse type)	> 18 fC	123 ps
	> 36 fC	63 ps
S2385 (reach through type)	> 18 fC	178 ps
	> 36 fC	89 ps

Details to be analyzed soon!

Development of New Calorimeter

Overview of Research Plan

How to Combine High-granularity and Dual-readout with Excellent Timing

Cherenkov Detector with psec-timing

2.85

Proposed concept

- Cherenkov radiator + UV-GasPM
- •UV-GasPM
 - Photocathode: Csl
 - Electron multiplier: DLC-RPC

• Expected Advantages

- Uniform and efficient Cherenkov readout
- Excellent timing (thin gap without no drift region)
- High-rate capable
- Low- and uniform- mass distribution
- Large area at low-cost
- High-granularity with segmented readout pad for RPC

Target timing resolution

• o(10ps) with multiple photoelectrons from Cherenkov light

Technologies for Cherenkov Detector

Ultra-low-mass high-rate-capable RPC for MEG II experiment

- Diamond-Like-Carbon (DLC) based electrode
- Ultra-low mass: $_{0.1\%X_0}$ with 4 layers
- High efficiency: > 90% with 4 layers
- \bullet Good time resolution: $_{160\,-\,170ps}$ with single layer (no optimisation for timing)
- High rate capability: > 1MHz/cm²

Fast timing photo-detector based on RPC-GasPM

• Single photon resolution of 25ps with prototype

Prototype of Gas PM with RPC (KEK, K. Matsuoka)

per sheet (50 μm) ↓	Synthetic	c quartz plate (2.0 mm)
ston sheet (120 μ m)	TEMPAX F	f <mark>loat glass (1.1 mm)</mark> Graphite electrode –
HNBR packin	ng (1 mm)	Copper electrode -
	Stainless ste	el chamber

Ref) https://pcs-instruments.com/articles/thescience-behind-diamond-like-coatings-dlcs/

https://arxiv.org/abs/2302.12694

Performance Test of RPC

First test of DLC-RPC with thinner gap

- •Gap: 192µm
- Anode: $4M\Omega/sq$, Cathode: $40-55M\Omega/sq$
- Gas: R134a/SF6/isobutane (94/1/5)
- •NOT optimised for timing yet

• Timing resolution of RPC

- Best resolution of 80ps obtained for large signal
 - Large signal = avalanche over full gap length in GasPM
 - Average # primary electrons ~2
- ⇒Single photoelectron time resolution: $80ps \times \sqrt{2} \sim 110ps$

Timing resolution expected for Cherenkov detector

• Expected # photoelectrons with (3mm-thick MgF2 and CsI photocathode ≥10

 \Rightarrow Expected timing resolution $_{35ps}$

Promising. (N.B. still not optimised for timing)

First Prototypes of Cherenkov Detector

15

Two types of radiators with photocathode

- •Hamamatsu: MgF₂(2.4mm) + Cr(3nm) + Csl (10nm)
- Fermilab: $MgF_2(3mm) + Cr(18nm) + Csl (18nm)$

Test of first prototypes in progress

Contents

- Sensor technologies for picosec timing: activities in Japan
 - Silicon sensor (LGAD)
 - Scintillator/Cherenkov detectors (slides from W. Ootani)
- Application of timing measurements to Higgs factories
 - Pileup rejection?
 - Particle ID
 - Improving particle flow performance
 - Secondary photon ID
- Possible design of timing detector (and consideration)

Target timing resolutions for Higgs factories

- 30 psec ($c\delta t = 1 cm$) realistic goal
 - ToF π/K/p separation
 (up to 5-10 GeV/c @ O(m) from IP)
 - Pileup separation in FCCee?
- 10 psec (cδt = 3 mm)
 - − Separation of neutral and charged particles in calorimeter
 → 5D particle flow
- 1 psec ($c\delta t = 0.3$ mm) for EM component
 - Identifying secondary photons from b/c for flavor tagging
- Timing resolution = single hit resolution x V(N hits)
 - Averaging effective in calorimeters

Particle ID (π , K, p) at ILD

- dE/dx in TPC
 - ~3 sigma for π/K , ~2 sigma for K/p
 - Can be improved by pixel readout
 - Impossible momentum at 1-2 GeV
- ToF at calorimeters
 - PID with simple reconstruction (averaging over O(10) hits)
 - 100 psec hit reso \rightarrow separation up to 2-3 GeV
 - 20 psec hit reso \rightarrow separation up to 3-5 GeV
 - Precise flight length estimation needed
 - Available in ILD software
 - More intelligent reconstruction using O(100) hits desired
 - Machine learning target: to be done

Energy	β (π)	β (K)	β (p)	Δt (π/K)	∆t (K/p)
5 GeV	0.9996	0.9951	0.9822	30 ps	88 ps
10 GeV	0.9999	0.9988	0.9956	7 ps	21 ps

@2m flight length

Physics usage of particle (kaon) ID

- Flavor tagging (esp. strange tagging)
- Quark charge ID

5D particle flow

- Cluster separation is essential in PFA
- Timing information should help separation of photons and charged particles
 - Flight length is longer in charged particle due to the magnetic field
- < 10 psec resolution is necessary
- Need software development for investigating actual performance
 Aim to fully replace PFA with modern ML method (ongoing work)

10 psec can separate < 9 GeV tracks from photons (1.8 m distance)

PFA with GNN: algorithm

- Input: position/energy/timing of each hit
- Output: virtual coordinate and β for each hit

GravNet arXiv:1902.07987

- The virtual coordinate (S) is derived from input variables with simple MLP
- Convolution using "distance" at S (bigger convolution with nearer hits)
- Concatenate the output with MLP

GravNet Bloc

GravNet Bloc

GravNet Block

Block

$$L = L_p + s_C (L_\beta + L_V)$$

• Condensation point: The hit with largest β at each (MC) cluster

Slobal Exchang

↓ Batch Normaliz

arXiv:2002.03605

Batch Normaliz

128

Dense

x4

- L_V: Attractive potential to the condensation point of the same cluster and repulsive potential to the condensation point of different clusters
- L_{β} : Pulling up β of the condensation point
- L_p: Regression to output features

Work in Progress: track-cluster matching

- PFA is essentially a problem "to subtract hits from tracks"
- HGCAL algorithm does not utilize track information
 - Only calorimeter clustering exists
- Simple extension to include track information
 - Adding "virtual hits" derived from track information
 - Hits at position where the track enters the calorimeter (from LCIO StackState)
 - Add a term to the object condensation loss function
 - Pulling up β of tracks (virtual hits) to promote them to condensation points (in addition to the usual beta-term, called beta-track term)
 - Evaluate fraction of (MC) charged clusters to be correctly assigned to clusters with tracks (virtual hits)

Preliminary results – event sample 10 Taus @ 10 GeV each

0.5

+(cm)

Hits on the virtual coordinate – colored by MC truth clusters x refers virtual hits from tracks left with beta-track term, right without beta-track term Taikan Suehara, Timing detector meeting of IDT-WG3 detector WG, 20 Dec. 2023 page 23

Consideration for detector design

- Time-of-flight: where to implement?
 - External tracker: just a few hits; need ultimate resolution
 Covering area is big: maybe strip sensors?
 - Calorimeter (either ECAL or HCAL) also usable for PFA improvement Averaging over many hits powerful but reconstruction more difficult Problem on electronics (power consumption)
 - Which layers to be replaced (or fully replaced?) to be investigated
- PID: only applicable to low energy tracks...physics impact?
 - Quark charge ID usually rely on high-energy tracks
 - RICH is more powerful? (then need to reduce radius of trackers \rightarrow thinner sensor with LGAD for < μ m resolution?)
- Need to establish detector design with psec timing Taikan Suehara, Timing detector meeting of IDT-WG3 detector WG, 20 Dec. 2023 page 24

Summary

- Some efforts in Japan for psec timing ongoing
 - LGAD sensors (inverse, AC-LGAD, pixel?)
 - Cherenkov with GasPM
- Application of psec timing
 - Particle ID
 - Improving PFA
 - Secondary photons?
- Concrete design as well as establishing physics case is necessary in parallel to hardware development