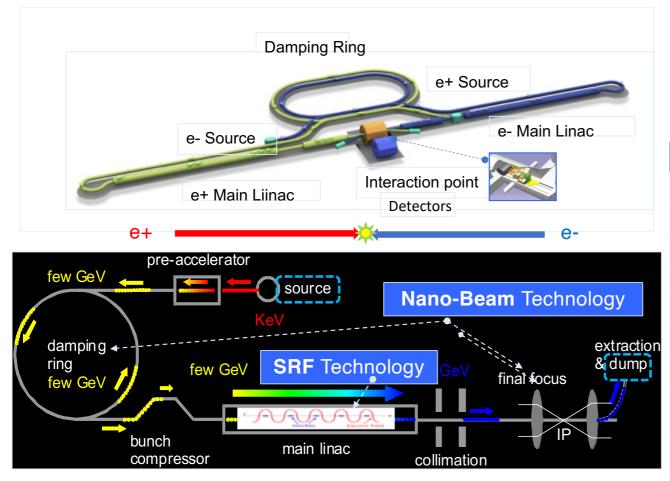
Draft-230403

1


IDT WG2 Project Introduction

Shin-ichiro Michizono and <u>Akira Yamamoto</u> (ILC-IDT and KEK)

To be presented at ILC CC Down-select Review Meeting, April 4, 2023

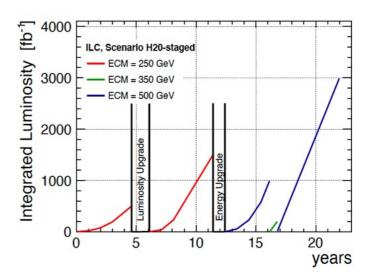
https://agenda.linearcollider.org/event/9958/timetable/#20230404

ILC and the Accelerator Technology

Parameters	Value
Beam Energy	125 + 125 GeV
Luminosity	1.35 / 2.7 x 10 ¹⁰ cm ² /s
Beam rep. rate	5 Hz
Pulse duration	0.73 / 0.961 ms
# bunch / pulse	1312 / 2625
Beam Current	5.8 / <mark>8.8</mark> mA
Beam size (y) at FF	7.7 nm
SRF Field gradient	< 31.5 > MV/m (+/-20%) $Q_0 = 1x10^{10}$
#SRF 9-cell cavities (CM)	~ 8,000 (~ 900)
AC-plug Power	111 / 138 MW

ILC Baseline and the Upgrades

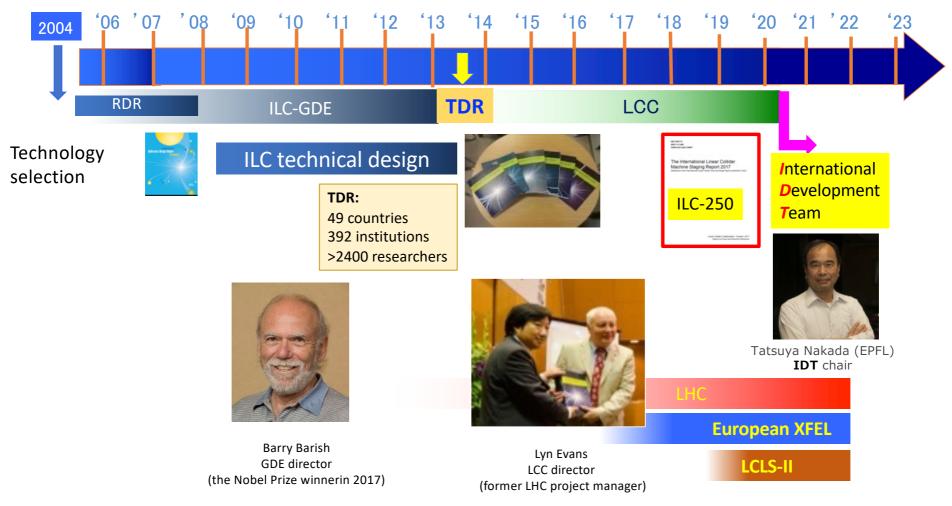
Quantity	Symbol	\mathbf{Unit}	Initial	\mathcal{L} Upgrade	Z pole	${ m E} \ / \ {\cal L} \ { m Upgrades}$		
Centre of mass energy	\sqrt{s}	${\rm GeV}$	250	250	91.2	500	250	1000
Luminosity	\mathcal{L}	$10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	80(30)	80(30)	80(30)	80(20)
Repetition frequency	f_{rep}	$_{\rm Hz}$	5	5	3.7	5	10	4
Bunches per pulse	n_{bunch}	1	1312	2625	1312/2625	1312/2625	2625	2450
Bunch population	N_e	10^{10}	2	2	2	2	2	1.74
Linac bunch interval	Δt_b	\mathbf{ns}	554	366	554/366	554/366	366	366
Beam current in pulse	I_{pulse}	$\mathbf{m}\mathbf{A}$	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6
Beam pulse duration	t_{pulse}	μs	727	961	727/961	727/961	961	897
Accelerating gradient	G	MV/m	31.5	31.5	31.5	31.5	31.5	45
Average beam power	P_{ave}	MW	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2
RMS bunch length	σ_z^*	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225
Norm. hor. emitt. at IP	$\gamma \epsilon_x$	$\mu { m m}$	5	5	5	5	5	5
Norm. vert. emitt. at IP	$\gamma \epsilon_y$	nm	35	35	35	35	35	30
RMS hor. beam size at IP	σ_x^*	$\mathbf{n}\mathbf{m}$	516	516	1120	474	516	335
RMS vert. beam size at IP	σ_y^*	$\mathbf{n}\mathbf{m}$	7.7	7.7	14.6	5.9	7.7	2.7
Luminosity in top 1 $\%$	$\mathcal{L}_{0.01}/\mathcal{L}$		73~%	73%	99%	58.3%	73%	44.5%
Beamstrahlung energy loss	δ_{BS}		2.6~%	2.6%	0.16%	4.5%	2.6%	10.5%
Site AC power *	P_{site}	MW	111	138	94/115	173/215	198	300
Site length	L_{site}	$\mathbf{k}\mathbf{m}$	20.5	20.5	20.5	31	31	40


• * AC plug-power may be further reduced (10 ~ 20 %), if the RF (Klystron) and SRF/Cryogenics (Q-value) Efficiency may be improved, and

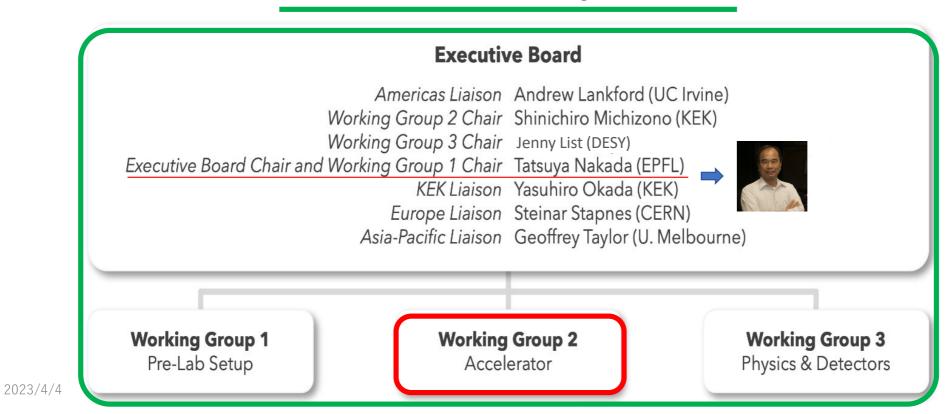
• the peak power reduction will become critical important, as a primary requirement.

- 2 x bunches, 2 x RF (**1.35 -> 2.7x10**³⁴)
 - Run 500GeV-machine at 250GeV, 10Hz:
 - factor 2 (2.7x10³⁴ -> 5.4x10³⁴)
 - Improve power efficiency

Energy upgrades:


- 500GeV (**31.5 MV/m Q₀=1** x 10¹⁰)
 - 1TeV (45 MV/m Q₀=2 x 10¹⁰, 300 MW)
 - more SCRF, tunnel extension
 - Site: 50km long, sufficient for 1TeV

Luminosity upgrades:


History of ILC Collaboration

ILC International Development Team

ILC supported by ICFA

April 2022:

ICFA re-stated support for ILC and extended IDT mandate:

• **IDT**, oversighted by ICFA, has identified:

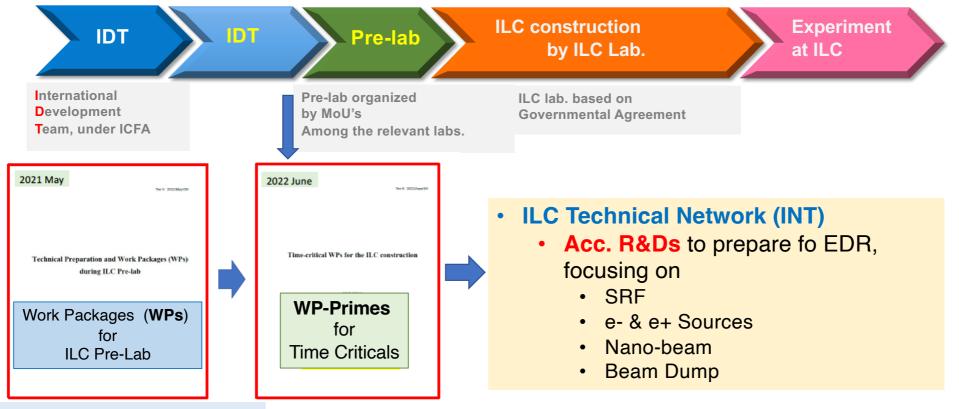
- Time-critical Work Packages (WP-prime's), and is exploring collaboration among KEK and international partners, with ILC Techical Network (ITN), with new funding expected in Japan, JFY2023 ~ (starting April 2023), enabling Japanese contribution to encourage other region's efforts,
- Preparing the phase for ILC-Prelab & Engineering Design Report (EDR) for the ILC construction, and

• **ICFA** continues to encourage:

• inter-governmental discussions between Japan and potential partner nations toward an **ILC** realization.

https://icfa.hep.net/wp-content/uploads/ICFA Statement April2022 Final.pdf

Courtesy: T. Nakada,

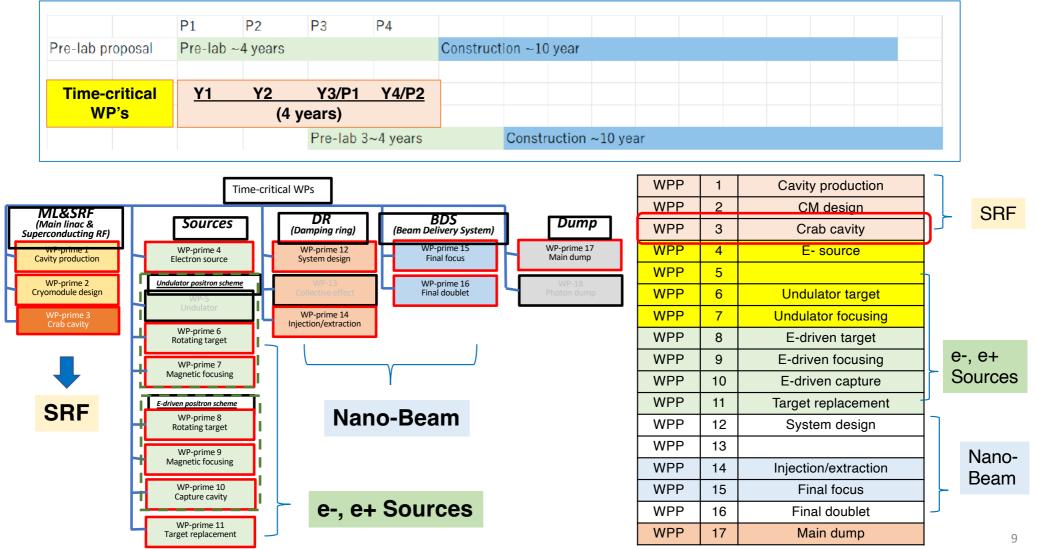

The IDT Mandates and Activities

- Organising ILC Technology Network,
- Making further advances in the development of ILC related technologies in view of providing more solid **bases for the ILC** engineering design and opportunities for other accelerator applications.
- The work programme derived from the work packages in the ILC Pre-lab proposal by selecting technically most critical items (WP-primes) and those that require long time to develop, based on collaboration agreements between KEK and interested laboratories worldwide.
- The execution of the work will be managed by each collaborations.

ILC Technology Network and Future ILC to be explained by IDT Chair (Tatsuya Nakada) in this later afternoon

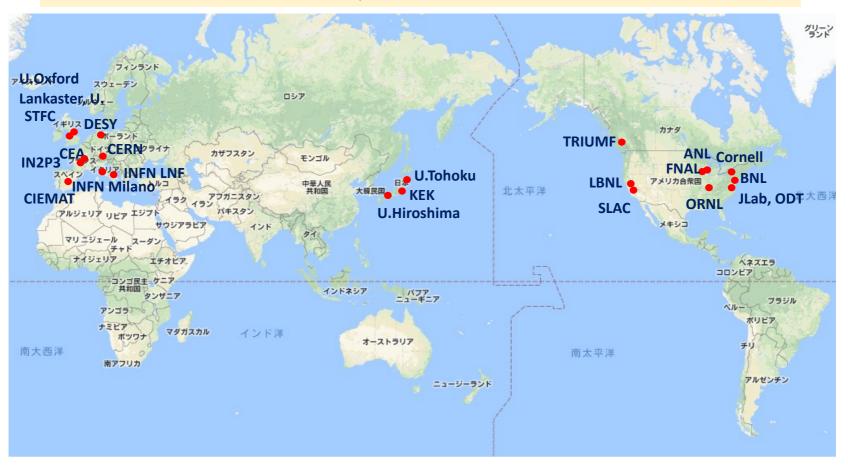
IDT Scope for ILC Realization

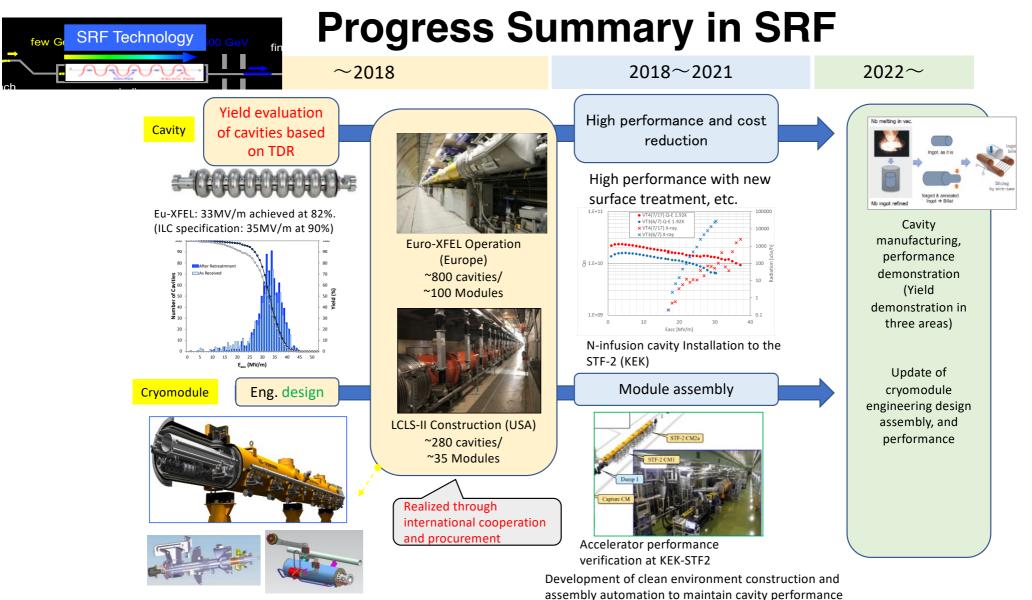
Aug. 2020

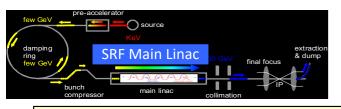


http://doi.org/10.5281/zenodo.4742018

2023/4/4

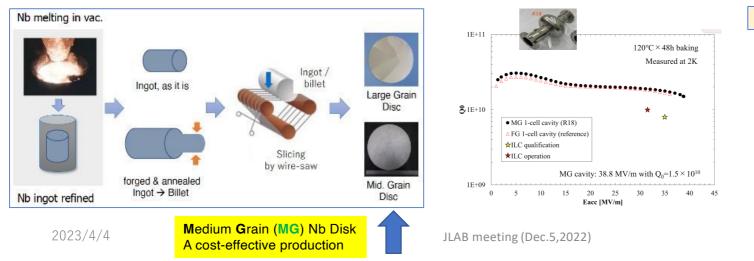

https://agenda.linearcollider.org/event/9735/c ontributions/50816/attachments/38190/5996 8/Time-Critical_WPsV8b.pdf


WP-Primes at ILC Technology Network



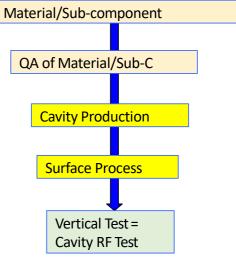
IDT-WG2

IDT-WG2 has about 50 accelerator researchers from around the world participating in discussions on ILC accelerator development research.



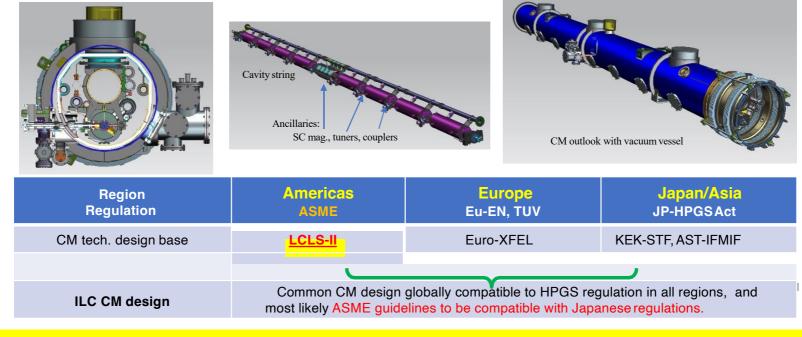
WP-prime 1: SRF Cavity

Aiming at Production Readiness with Cost effective production


- Research with single-cell cavities to establish the best production process including: \bullet Advanced Nb sheet/disk cost effective production method \rightarrow MG Advanced surface treatment recipe
- Globally common design with compatible High Pressure Gas Safety (HPGS) regulation
- ◆24 nine-cell cavities are to be developed for industrial-production readiness
 - ◆8 cavities (4 / batch) in each region → 4 with FG and 4 with MG Production process encouraged to be optimized in each region
- ◆ RF performance/success yield to be examined (including 2nd pass and further)
 - \bullet 3rd pass to be examined if effective

produced				
	Americas	Europe	JP/Asia	
single-cell	2	2	2	
nine-cell	8	8	8+a	

cavities to he


Production process

13

WP-prime 2: Cryomodule (CM) Design

Referring progress in particular LCLS-II experiences

- Unify cryomodule (CM) design with ancillaries, based on globally common engineering design, drawings. and
- Establish globally compatible safety design base to be approved/authorized by HPGS regulations individually in each region, most likely referring ASME guidelines to be compatible with Japanese regulations.

2023/4/4 An International CM, KEK contributed, to be demonstrated with cavities globally contributed !!

WP-prime 3: Crab Cavity Development with Two-Design Down-selection and Prototypes

- RF property simulation to optimize cavity design
- Pre-down-selection to choose two primary candidates
- Development and evaluation of two prototype cavities
- Demonstration of synchronized operation with prototypes
- Down-selection to choose final cavity design
- Cryomodule design based on final cavity design

Item	Recent specification (after TDR)
Beam energy	125 GeV (e ⁻)
Crossing angle	14 mrad
Installation site	14 m from IP
RF repetition rate	5 Hz
Bunch train length	727 µsec
Bunch spacing	554 nsec
Operational temperature	2.0 K (?)
Cavity frequency	1.3/3.9 GHz
Total kick voltage	1.845/0.615 MV
Relative RF phase jitter	0.023/0.069 deg rms (49 fs rms)

QFEX2BS **ODEXIS** QFEX2AS CRAB SK1 SD0 ZVFONT QF1 SF1 -QD0 14.049m Elliptical/Racetrack Lanc. Univ. (3.9 GHz) ODU RF Dipole (RFD) Double Quarter Wave CERN (DQW) Wide Open BNL Waveguide (WOW) **Ouasi-waveguide** MultIcell Resonator FNAL (QMIR)

two beamline distance 14.049 m x 0.014 rad = 197 m m

WP-prime 3: Crab Cavity Development with the design down-selection

Priority	Items	Y1	Y2	Y3	Y4
А	Decision of installation location with cryogenics/RF location accelerator tunnel	All			
А	Confirm the complete CC system specifications	All			
А	Development of CC cavity/coupler/tuner integrated design (ahead of Preliminary CC technology Down-selection)	EU, AM			
А	Preliminary CC technology down-selection (2 cavity options)	All			
A/B	CC Model-work and Prototype production and high-power validation of CC cavity/coupler/tuner integrated system (incl HPGS provision) for two primary candidates (ahead of Final CC technology Down-selection)	EU, AM	EU, AM		
В	Perform harmonized operation of the two prototype cavities in a vertical test to verify ILC synchronization performance (cryo insert development and commercial optical RF synchronization system).		EU, AM	EU, AM	
A/B	Final CC technology down-selection			All	
В	Preliminary Crab Prototype CM (pCM) design – confirming dressed cavity integration and compliance with beam-line specification (incl HPGS provision)			EU, AM	EU, AM
В	Final pCM engineering design prior to production			EU, AM	EU, AM
Note: Produ	action of pCM is assumed after Y5 (P3)				

List of items:

← We are here

17