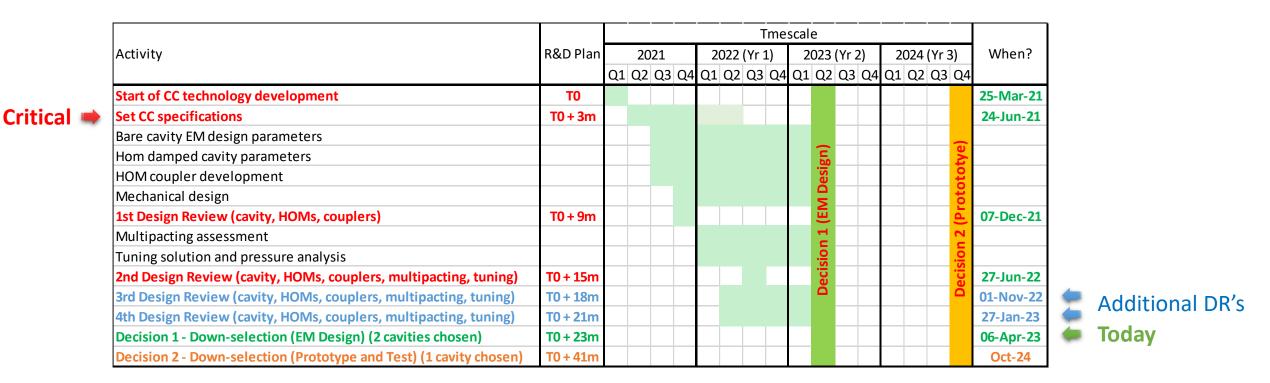


WP3: ILC Crab Cavities Down-selection Review – Design Specifications

Peter McIntosh – ILC WP3 Coordinator UKRI-STFC Daresbury Laboratory

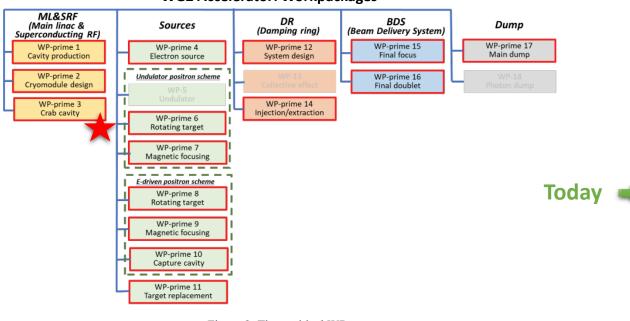
4th-6th April 2023



-ilc

Outline

- ILC CC Development Plans
- ILC Pre-Lab Time Critical Workpackages
- CC Specifications Development
- ILC BDS Beam Parameters
- CC Operational Requirements
- ILC IR Dimensional Constraints
- Proposed CC Specifications
- Other CC Expectations
- Summary


ILC Crab Cavity (CC) Development Plans

- CC development plans originally set in Mar21 (2-yrs ago):
 - Targeted a 1st (2-cavity) selection process in Oct22 (18-mo duration).
 - Ultimately to perform a 2nd selection of prototyped ILC CC technology in ~Apr24.
- At 2nd Design Review (Jun22), identified more development time needed:
 - Delayed today's 1st down-selection by ~6-mo), added 2 additional design reviews (Nov22 and Jan23).
- All IDT WP3 CC development processes captured at: <u>https://agenda.linearcollider.org/category/256/</u>

ILC Pre-Lab Time Critical Workpackages

Ref: 'Time-critical WPs for the ILC construction', IDT-WG2, v8.0 Jun 2022)

WG2 Accelerator: Workpackages

Figure 3: Time-critical WPs

- CC design teams from Europe & America.
- Strong organisational support from KEK:
 - Kirk Yamamoto WP1/2 Coordinator
 - Akira Yamamoto IDT WG2
 - Shin Michizono IDT WG2 Chair

List of ite	<u>ms:</u>	2023	2024	2025	2026
Priority	Items	Y1	Y2	Y3	Y4
А	Decision of installation location with cryogenics/RF location accelerator tunnel	All			
А	Confirm the complete CC system specifications	All			
А	Development of CC cavity/coupler/tuner integrated design (ahead of Preliminary CC technology Down-selection)	EU, AM			
А	Preliminary CC technology down-selection (2 cavity options)	All			
A/B	CC Model-work and Prototype production and high-power validation of CC cavity/coupler/tuner integrated system (incl HPGS provision) for two primary candidates (ahead of Final CC technology Down-selection)	EU, AM	EU, AM		
В	Perform harmonized operation of the two prototype cavities in a vertical test to verify ILC synchronization performance (cryo insert development and commercial optical RF synchronization system).		EU, AM	EU, AM	
A/B	Final CC technology down-selection			All	
В	Preliminary Crab Prototype CM (pCM) design – confirming dressed cavity integration and compliance with beam-line specification (incl HPGS provision)			EU, AM	EU, AM
В	Final pCM engineering design prior to production			EU, AM	FU AM

CC Specifications Development

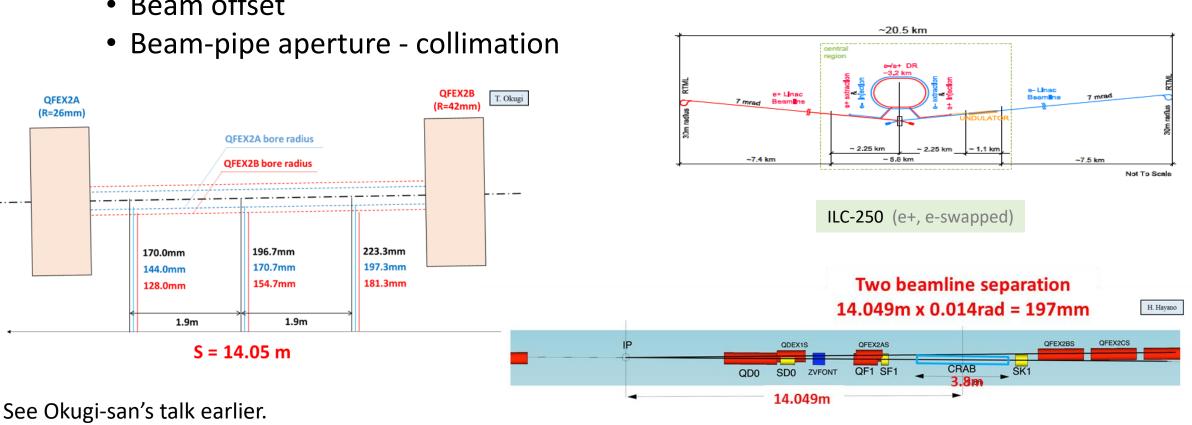
- Beam parameters to comply with:
 - BDS driven specifications for; beam current, bunch spacing, beam size, number of bunches, repetition rate, train length and bunch spacing etc.
- Cavity operational requirements:
 - Kick voltage, RF frequency, HOM impedance thresholds, amplitude/phase stability, frequency tuning, peak fields etc.
- Dimensional constraints:
 - Beam crossing angle, beam separation, beam-pipe aperture, alignment tolerances and length restriction etc.
- Worked closely with the ILC BDS team (Toshiyuki Okugi in particular) to identify many of the proposed specifications (identified in the v19) document as uploaded.

Damping Ring

e- Source

e+ Main Liinac

e+ Source

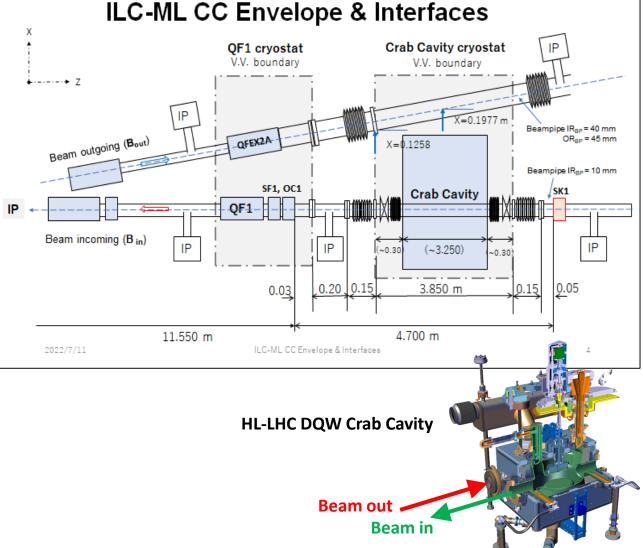

Interaction point

e- Main Linac

e-

ILC BDS Beam Parameters

- Driving BDS constraints:
 - CC wakefields transverse primarily
 - Alignment tolerances (x, y and roll)
 - Beam offset


CC Operational Requirements

- The ILC Crab Cavity system must:
 - Provide the required CW deflecting voltage to optimally rotate the intersecting beam bunches at the IP.
 - Suppress all unwanted HOM power (longitudinal and transverse) to an acceptable level.
 - Ensure its robust operation, with acceptable limits for stability: peak fields, multipactor, alignment and RF control.
 - Provide an ability to de-tune its frequency, such that it can be safely 'parked' during beam operations.
 - Physically fit within the constraints of the ILC BDS Interaction Region location.

ILC BDS IR Dimensional Constraints

- 3.8 m longitudinal space in the IR, for CC cryomodule (incl. gatevalves).
- 197 mm beam-line separation at centre of 3.8 m location, which varies across its length (for 14 mrad crossing angle).
- Outgoing beam-pipe will likely be incorporated inside CC cryomodule, maybe even within CC helium tank (similar to HL-LHC).
- Incoming external beam-pipes are 20 mm diameter (beyond bellows), impacts cryomodule transition space required (wakefield effects).

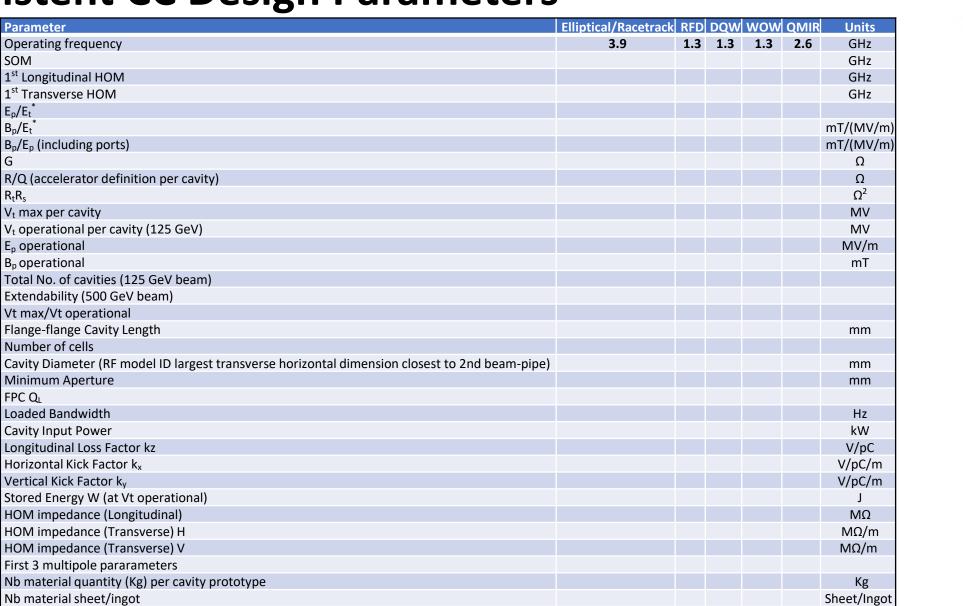
Other CC Expectations

- Identify CC manufacturing provisions.
- Methodology:
 - Sheet forming, billet machining or hybrid.
 - How much Nb and NbTi material will be required, in what form (sheet or billet) and to what specification.
- Identification for cryomodule integration complexity.
- KEK expecting to utilise MEXT funding during 2023 to assist in procuring Nb/NbTi material for the 2 down-selected CC designs for prototyping.
- Re-affirming the importance for this down-selection review at this time.

Proposed CC Specifications (v19 file as posted)

2 beam energy options

arameter		t-TDR fication	10Hz Upgrade ^{1,2}	1 TeV CoM Spec ²					
Beam Energy (GeV) e-		125			500				
Crossing Angle (mrad)			14						
Installation site (m from IP)		14							
RF Repetition Rate (Hz)		5	10	4					
Number of bunches		312	2625	2450		50			
Bunch Train Length (ms)		27	961	897		7			
Bunch Spacing (ns)	5	554			366				
Beam current (mA)	5	5.8	8.75		7.6				
Operating Temp (K)			2						
Cryomodule installation length (m) Horizontal beam-pipe separation (m)	0.196	3.8 (incorporating gate valves) 0.1967 (centre) ±0.0266 (each end of installation length)							
Cavity Frequency (GHz)	3.9	2.6	1.3	3.9	2.6	1.3			
Total Kick Voltage (MV)	0.615	0.923	1.845	2.5	3.7	7.4			
Max Ep (MV/m)		45							
Max Bp (mT)		80							
Amplitude regulation/cavity (% rms)		3.5 (for 2% luminosity drop)							
Relative RF Phase Jitter (deg rms)		0.069							
Timing Jitter (fs rms)		49 (for 2% luminosity drop)							
Max Detuning (kHz)	240	170	100 - 180	-	-	100 - 18			
Longitudinal impedance threshold (Ohm)		Cavity wakefield dependent							
Trasverse impedance threshold (MOhm/m) (X,Y)		48.8, 61.7							
Cavity field rotation tolerance/cavity (mrad rms) 5.2 (for 2% luminosit					• •				
Beam tilt tolerance (H and V) (mrad rms and urad rms)		0.35, 7.4 (for 2% luminosity drop)							
Minimum CC beam-pipe aperture size (mm)		>25 (same as FD magnets)							
Minimum Exraction beam-pipe aperture size (mm) 20									
Beam size at CC location (X, Y,Z) (mm,um,um)		0.97, 66, 300							
Beta function at CC location (X, Y) (m,m)		23200, 15400							
Horizonal kick factor (kx) (V/pC/m)		<< 1.6 x 10 ³							
Vertical kick factor (ky) (V/pC/m)		<< 1.2 x 10 ²							
CC System operation		assume CW-mode operation							


FrequencyKick Voltage

CW operation required

10

Consistent CC Design Parameters

Maximum stresses, max pressure at RT (weakest)?

MPa

Summary

- ILC CC development plans have 'more-or-less' remained on-track over the past 2-years, to arrive at this week's review.
- ILC BDS requirements have been comprehensively integrated into the required operational CC specifications (as best we can).
- Have tried to remove any performance parameter inconsistency, by defining an agreed set of CC Design Parameters.

Important Note:

• Each of the 5 CC design solutions have developed at varying rates – their design maturity therefore will not be the same!

MANY THANKS

Questions?

Science and Technology Facilities Counci