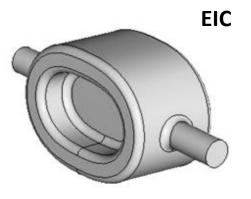
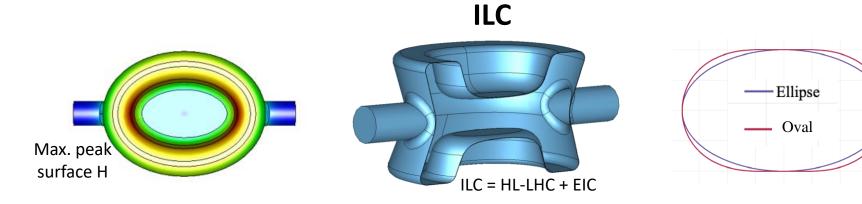
Double Quarter Wave (DQW) For the ILC Crab Cavity Application

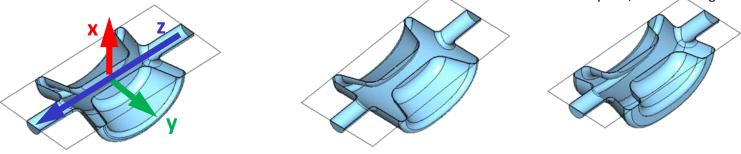
S. Verdu Andres (BNL), R. Calaga (CERN) 3-6 April 2023


DQW Design Evolution

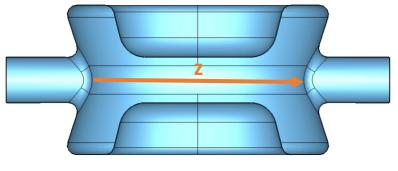
Space requirements —

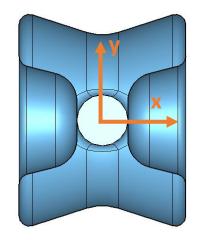

Further reduce peak fields

- 400 MHz, on-cell damping & FPC
- Cavity walls with **waist**, space
- Elliptical profile (H-field region)
- Coaxial couplers


- 200-400 MHz, on cell-damping
- Flat cavity walls
 - Cassini-Oval profile (H-field region)
 - Waveguide and/or coaxial couplers

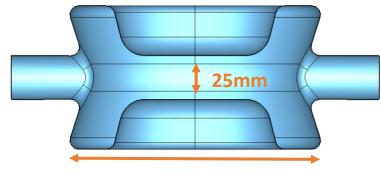
Design Comparison


Parameter	unit	LHC-type DQW (B05)	EIC-type DQW (A42)	LHC+EIC-type (CO2)
Aperture, pole distance	[mm]	20	20	20
Profile		Elliptical + waist	Oval + straight walls	Oval + waist
Dimensions: L x W x H	[mm]	95 x 100 x 88	115 x 98 x 82	117 x 76 x 97
Rt/Q (circuit)	[Ω]	309	333	311
Geometric factor	[Ω]	80	82	97
E_{pk} at 1.86 MV	[MV/m]	50	56	55 <
B_{pk} at 1.86 MV	[mT]	99	81	84 ←
First HOM (GHz)	[GHz]	1.74 (z)	1.98 (z)	2.18 (z) ←

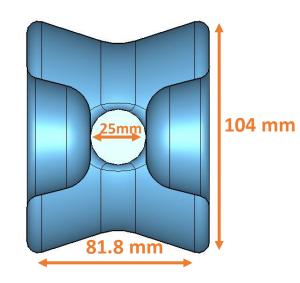

Added advantages: broad inductive plate to accommodate ports, ease cleaning

Aperture Study

Aperture	[mm]	30*	25* (Design)	20
Dimensions: L x W x H	[mm]	126 x 91 x 106	117 x 82 x 104	117 x 76 x 97
Circuit Rt/Q	[Ω]	153	211	311
Geometric factor	[Ω]	104	102	97
E_{pk} at 1.86 MV	MV/m	63	58	55
B_{pk} at 1.86 MV	MV/m	109	99	84
First HOM	GHz	1.84 (z)	2.00 (z)	2.18 (z)

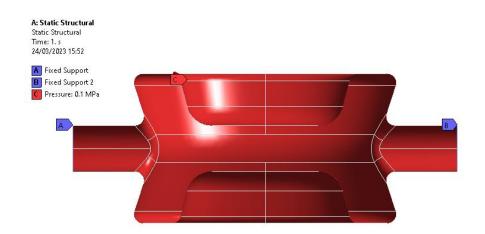

* with adopted max. allowable peak fields of 45 MV/m and 80 mT

* Peak fields may be further reduced with refined optimization

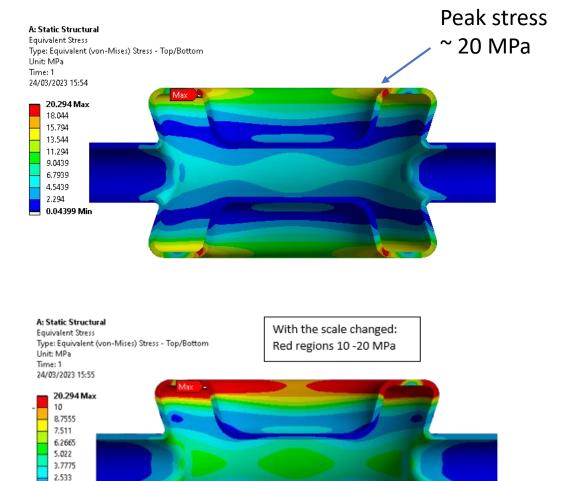

#cavities for 125 GeV (Total Vcc = 1.86 MV)	2	
#cavities for 500 GeV (Total Vcc = 7.4 MV)	6	

DQW Parameters

Parameter	Unit	Value	Parameter	Unit	Value
Operating frequency	(GHz)	1.3	Cavity diameter	(mm)	104
First long. HOM	(GHz)	2.00	, Min. Aperture	(mm)	25
First trans. HOM, vertical	(GHz)	2.21	Flange-to-flange length	(mm)	~250
Ep/Et*		3.60	FPC Loaded Q		1×10^{7}
Bp/Et*	(mT/MV/m)	6.14	Loaded Bandwidth	(kHz)	0.13
G		102	Cavity input power	(kW)	0.3
Rt/Q (acc)	(Ω)	422	Stored energy (at Vt	. ,	
RtRs	(Ohm^2)	43044	operational)	(L)	0.25
Vt max per cavity	(MV)	1.44	HOM impedance		TBD
Vt /cavity (125 GeV)	(MV)	0.93	Loss and Kick Factors		TBD
No. cavities (125 GeV)		2	Multipole Parameters		TBD
Extendability (500 GeV)		6	Max. Stress, Max. Press	Mpa, bar	42, 2.1
Number of cells		1	Nb per cavity	(kg)	15



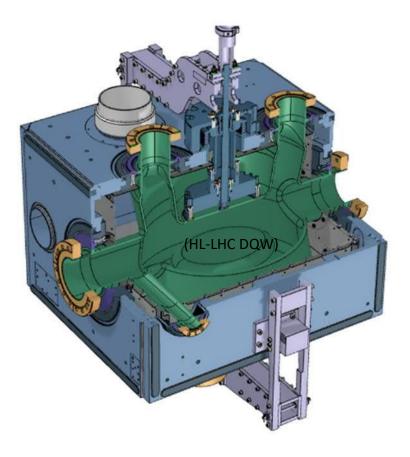
142 mm


First Stress Analysis

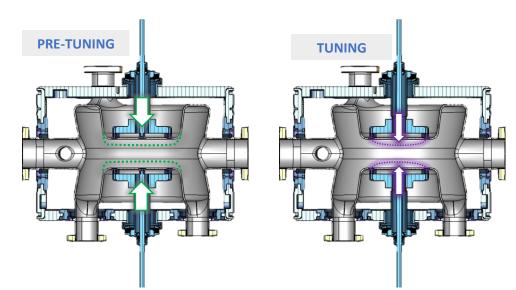
- Shell elements with a 3 mm thickness
- The external pressure of 1 bar
- Two fixed supports (on both cavity extremities)

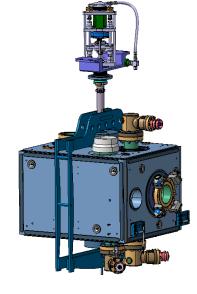
Analysis is linear elastic, results can be scaled with pressures (assuming to stay in elastic domain).

A tuning frame to transfer the force symmetrically will be needed – similar to HL-LHC crab cavities

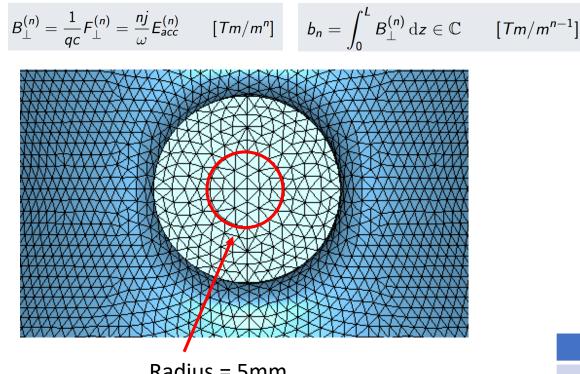


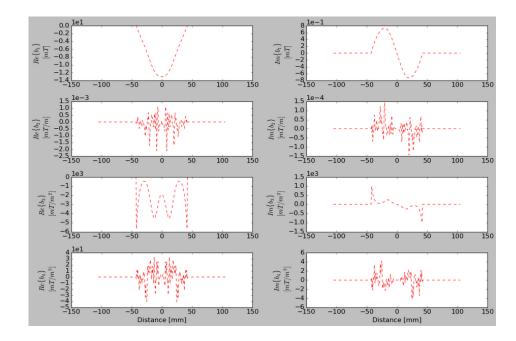
1.2885 0.04399 Min


Courtesy: J. Swieszek

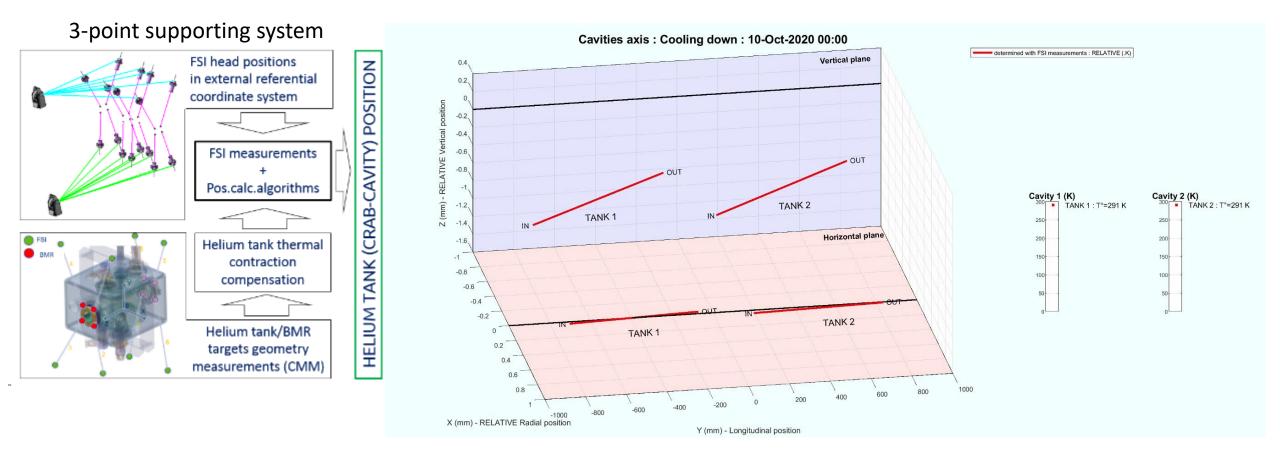

Frequency Tuner & He-Tank

Active & symmetric tuning using Ti-frame across the poles with actuation done at warm \rightarrow push-pull tuning systems of both capacitive plates.


- Symmetric displacement of the poles to preserve field center
- Initial (asymmetric) pre-tuning and symmetric tuning


- Provides reinforcement to sensitive pole region by transferring the force symmetrically
- Further development requires He vessel design which can be similar concept as HL-LHC

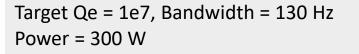
RF Multipoles

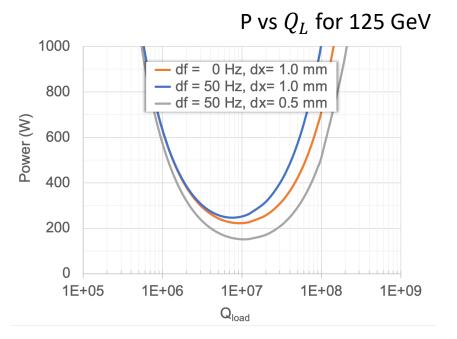

Radius = 5mm (20% of aperture)

But, maybe this not relevant for ILC. Perhaps kicks are dominated by alignment & vibrations ?

n	bn (normal)	an (skew)	bn (normal), PW	an (skew), PW
1	3.105714e+00	2.813182e-06	4.294989e+00	7.297858e-08
2	2.963073e-03	7.775165e-02	1.935741e-04	2.842546e-04
3	8.726951e+02	3.375818e-01	1.265596e+03	2.919143e-03
4	2.370459e+02	7.185031e+03	7.742965e+00	2.749502e+02
5	1.425299e+07	2.250545e+04	7.318126e+05	1.167657e+02

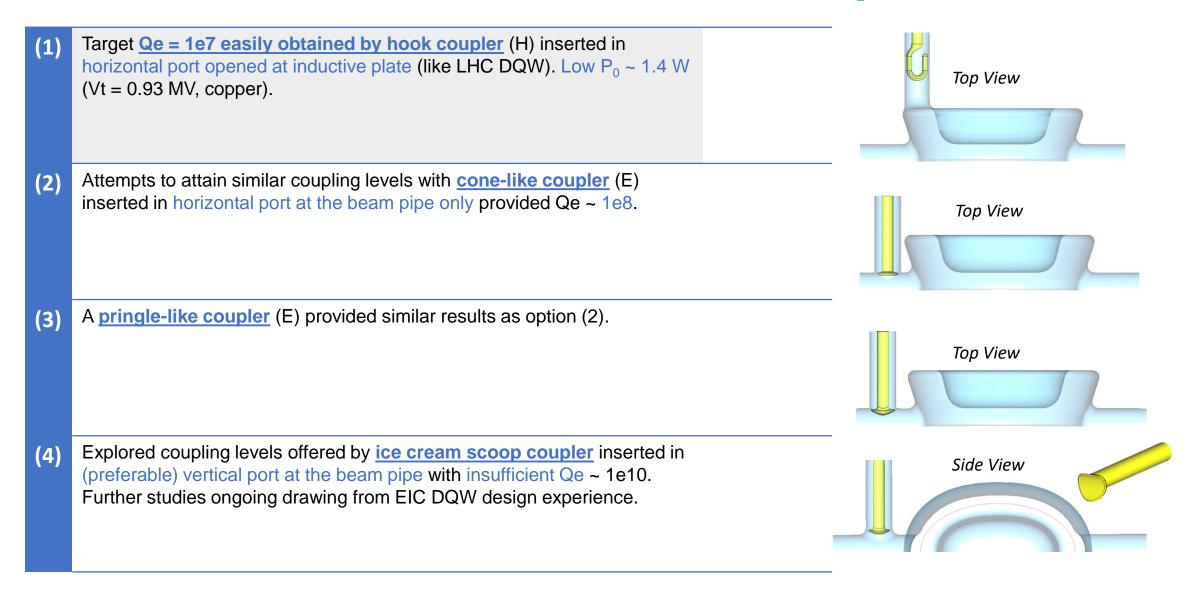
Alignment Monitoring, HL-LHC Example


Repeatability of several heat-up and cool down sequences : Below $20\ \mu m$


RF Power Requirements

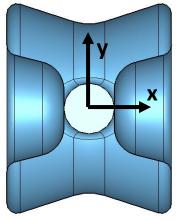
Input power required including beam offset beam (y) & by detuning ($\Delta \omega$):

$$P_{g} = \frac{1}{8} \frac{|\overrightarrow{V_{\perp}}|^{2}}{(R/Q)_{\perp}Q_{load}} \times \left\{ \left[1 + \frac{2(R/Q)_{\perp}\kappa yQ_{load} * I_{b0}\cos\varphi_{b}}{|\overrightarrow{V_{\perp}}|} \right]^{2} + \left[2Q_{L}\frac{\Delta\omega}{\omega_{0}} + \frac{2(R/Q)_{\perp}\kappa yQ_{load} * I_{b0}\sin\varphi_{b}}{|\overrightarrow{V_{\perp}}|} \right]^{2} \right\}$$


ILC CC Specs v11		125 GeV, 10 Hz upgrade	500 GeV
Frequency $\omega_0/2\pi$	[GHz]	1.3	1.3
Total V_{\perp}	[MV]	1.86	7.4
I _{b0}	[mA]	8.75	7.6
No. DQW cavities		2	5
V_{\perp} per cavity	[MV]	0.93	1.48
DQW R/Q_{\perp} (circuit)	[Ω]	211	211
Max. offset y	[mm]	0.5	0.5
Detuning $\Delta \omega/2\pi$	[Hz]	50	50

10

Fundamental Power Coupler

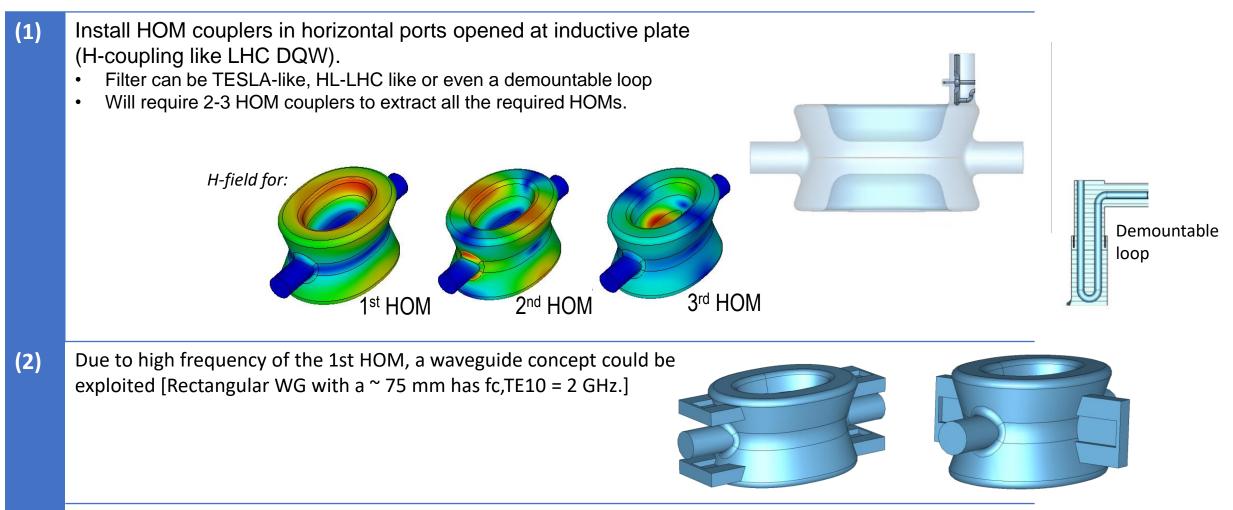

All using 40 mm Ø tube for DN40 CF flange

Mode Spectra, Bare Cavity

Longitudinal Impedance Transverse Impedance 100 1.3 GHz 10 -Vertical - Horizontal 10 1 1 0.1 0.01 0.01 Z_L [kOhms] 0.1 0.01 0.001 0.001 0.0001 2 3 ⁴ Frequency [GHz] 8 9 10 0 1 7 7 8 0 2 3 5 6 9 Frequency [GHz

Impedance threshold [ILC CC Spec v13]	Total	Per cavity (6 cavities)
Zx (MΩ/m)	48.8	8.1
Zy (MΩ/m)	61.7	10.3
Zz	TBD	

HOM #	Freq (GHz)	R/Q (circuit)	Туре
(1)	2.00	43 Ω	Long. (z)
(2)	2.21	23 Ω/m	Vert. (x)
(3)	2.30	28 Ω/m	Hor. (y)
(4)	2.36	31 Ω	Long. (z)
(5)	2.89	26 Ω/m	Vert. (x)

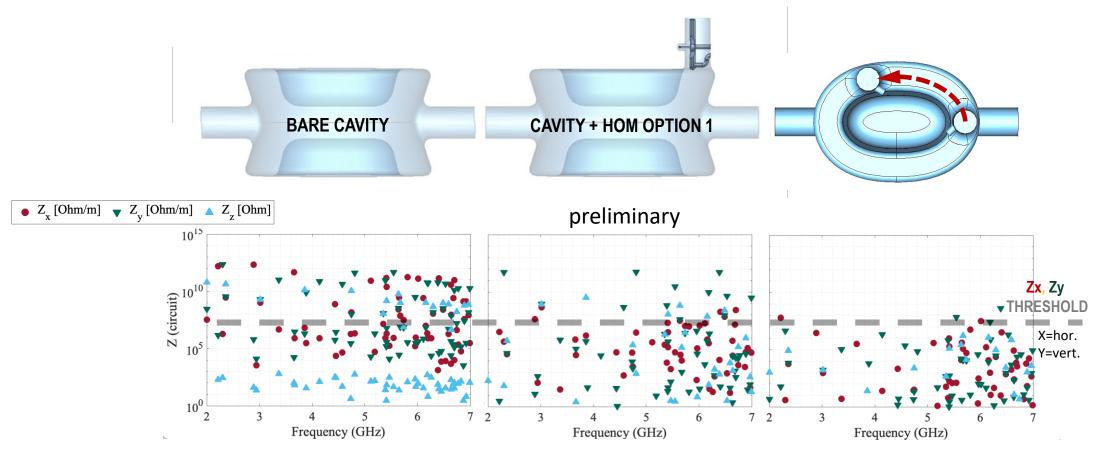


Freq TE11 cutoff (25 mm diameter) = 7 GHz Wake = 200m, not converged 10

HOM Coupler

**Work in progress

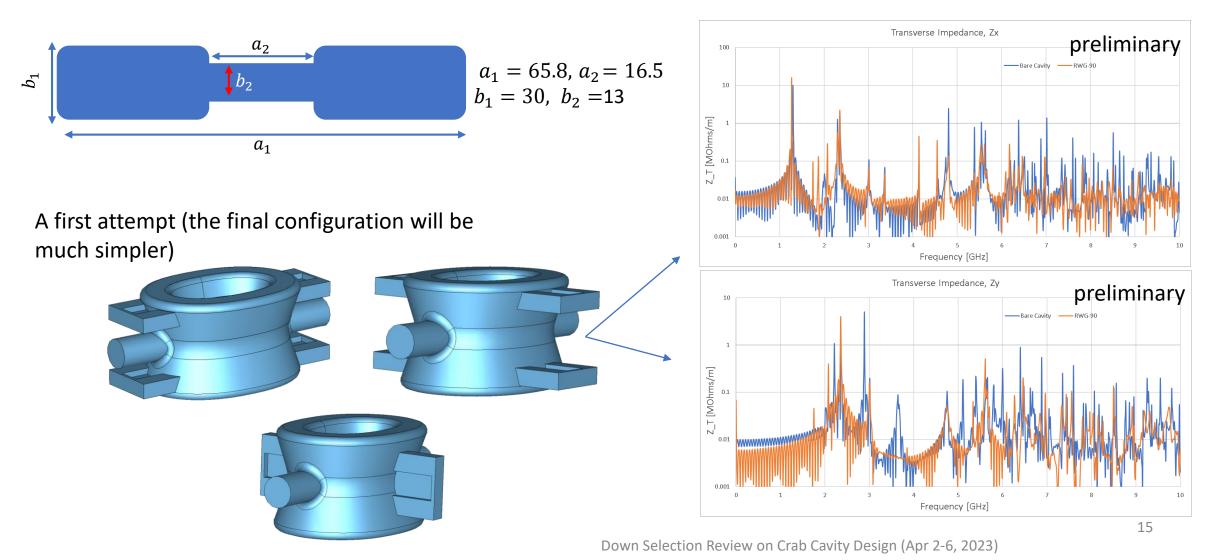
13



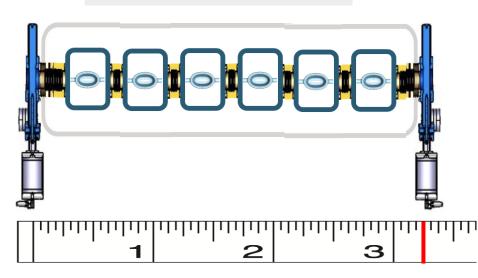
(3) A combination of options (1) and (2) is most likely the final option

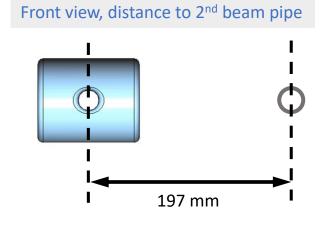
HOM Coupler Option 1 - Coax

**Work in progress


- Almost all relevant modes have substantial magnetic field on the inductive region (top/bottom)
 - HL-LHC DQW uses 3-hook type HOM couplers on the inductive plate
- First results with single Tesla-type HOM coupler shows promising results. Studies to be followed up

HOM Coupler Option 2 - RWG


**Work in progress


The high frequency of the HOM \ge 2 GHz allows for the use of waveguide. For example, we can start with WRD200 (2 - 5 GHz) – adapt the ridge geometry to make it smaller

- For 500 GeV option: 6 DQW cavities to provide 7.4 MV crabbing kick
- Length available of 3.25 m enough for crab cavities and transitions (cold-warm, gate valves, etc.)
- Sufficient clearance to 2nd beam pipe for coupler integration
- Top loading cryostat similar to HL-LHC has many salient features to exploit

Side view, 6 DQW in cryomodule

16

Top Loading Concept, HL-LHC

Alignment check during a cryostating step (2017)

Precision alignment of cavities & components on alignment table and closure of beam vacuum in ISO4

Alignment followed through the assembly and then rest of the life cycle

Mounting and assembly of cryostat components done on lifting frame & access to key components until the final closure on the bottom part

Final Comments

- The DQW cavity is a very compact solution for the ILC crabbing system
 - 2 single-cell cavities provide 1.86 MV for the 125 GeV option
 - 6 single-cell cavities for the 500 GeV option
- Several concepts can be directly adapted from the recent developments of the of HL-LHC and EIC work.
- Cavity compactness lends itself to a machined cavity ingot (at least the main body and interfaces). Depending on the damping scheme, adapted welding/brazing operations will have to considered
 - First priority is to converge on HOM damping scheme
 - Second priority is to build a prototype for voltage demonstration
 - Engineering design and other details to follow