

QMiR Crab Cavity for ILC

Andrei Lunin, Vyacheslav Yakovlev April 04-06, 2023

WP3 Crab Cavity Design Down-selection Review

Meeting Goals

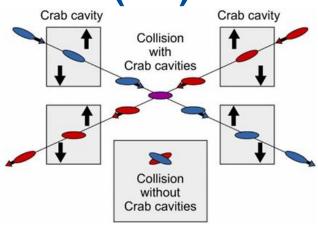
Remit for the Down-Selection Review

- Assess and compare CC EM designs, finally optimised:
 - Cavity,
 - HOMs,
 - Couplers (input and HOM),
 - Multipacting,
 - Pressure stability and tuning,
 - Fabrication Sheet/Ingot/Mixed, Nb material required,
 - Cryomodule integration compliance with specification,

Review Panel Charge

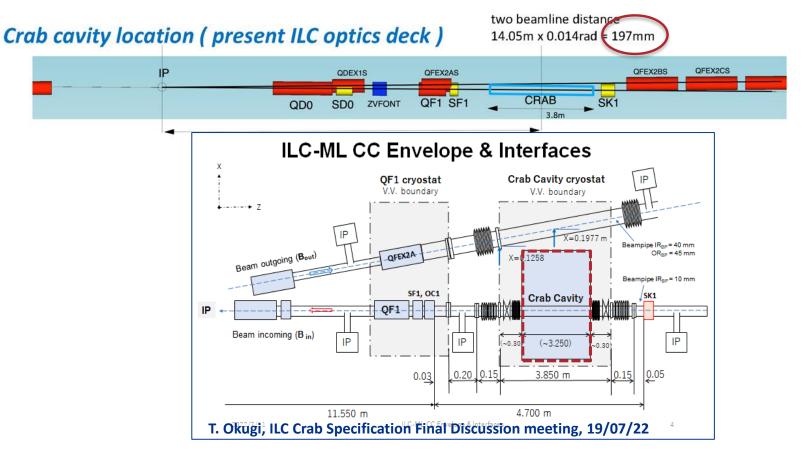
Updated from WP3 Design Review Meeting #4

- 1. To review the crab cavity (CC) designs proposed, to assess their predicted compliance against the functional Specifications for the ILC-250, extended capability for the ILC-500, and the feasibility for higher energy.
- 2. To review the status of the design of these CC solutions and identify their risk in comparison to other comparable systems presently in operations or in development elsewhere in the world.
- 3. To review the proposed CC solutions for their choices of materials, fabrication processes, tuning analysis, power coupler, HOM couplers, SRF performance, etc.
- 4. To review the plan for the prototype development including possible cooperation (or consortium effort) with other laboratories and companies/industry.
- 5. To provide appropriate advice and feedback for the criteria and further processes to be scoped for the final CC down-selection, based on the prototype development and subsequent high-power tests.
- 6. To identify the 2 most optimum crab cavity designs which can provide the operational requirements for ILC and which can be taken forward to prototype and high-power validation, in conjunction with its associated input and HOM coupler components, without helium jacket.


Outline

- General Requirements for the ILC Crabbing System
 - Total kick voltage and surface fields
 - HOM impedance and wakefield thresholds
 - Available space limitations
- QMiR Cavity (2.6 GHz) RF Design
 - Electrode profile and surface fields optimization
 - SOM, HOM and Wakefields Simulations
 - Statistical HOM Analysis
 - Cryogenic loss budget and RF power requirements
 - Multipactor analysis
- Cavity Mechanical Design
 - Cavity mechanical simulations (LFD and dF/dP)
 - Frequency Tuner and Dressed Cavity Design
- QMiR Cryomodule Conceptional Design
- Future R&D Plans

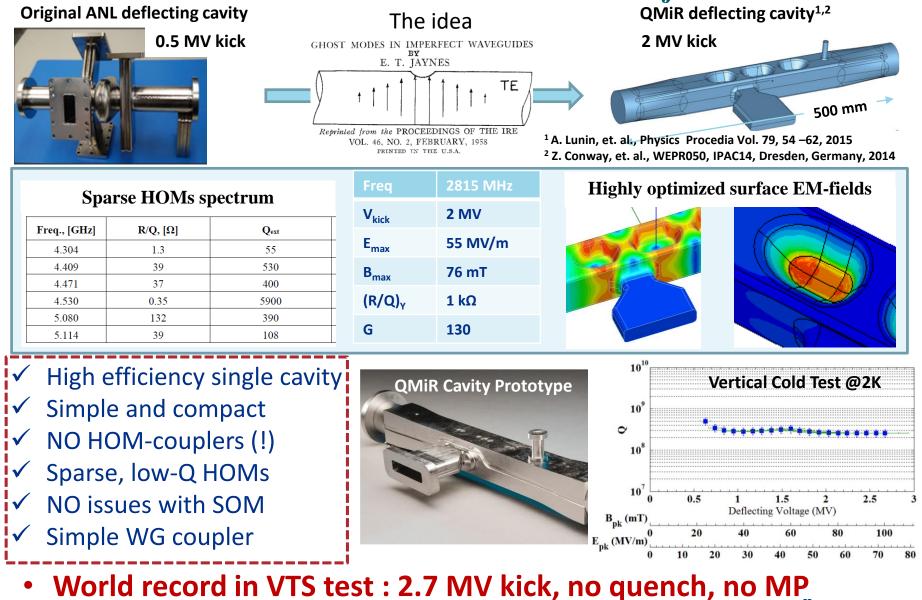
Specifications for the ILC Crab Cavities (CC)


1	Parameter	Post- Specifi		10Hz Upgrade ^{1,2}	1 Te	eV CoM	Spec ²
2	Beam Energy (GeV) e- 📃		125			500	
3	Crossing Angle (mrad)			14			
4	Installation site (m from IP)			14			
5	RF Repetition Rate (Hz)	5	5	10		4	
6	Number of bunches	13	12	2625		2450)
7	Bunch Train Length (ms)	72	27	961		897	
8	Bunch Spacing (ns)	55	54		36	i6	
9	Beam current (mA)	5.	.8	8.75		7.6	
10	Operating Temp (K)			2			
11	Cryomodule installation length (m)		3.8 (i	ncorporating	gate va	alves)	
12	Installation site (m from IP) RF Repetition Rate (Hz) Number of bunches Bunch Train Length (ms) Bunch Spacing (ns) Beam current (mA) Operating Temp (K) Cryomodule installation length (m) Horizontal beam-pipe separation (m) Cavity Frequency (GHz)	0.1967 (ce	entre) ±0	.0266 (each e	end of i	nstallati	ion length
13	UP .						
14	Cavity Frequency (GHz)	3.9	2.6	1.3	3.9	2.6	1.3
15	Total Kick Voltage (MV)	0.615	0.923	1.845	2.5	3.7	7.4
16	Max Ep (MV/m)			45			
17	Max Bp (mT)	80					
18	Amplitude regulation/cavity (% rms)	3.5 (for 2% luminosity drop)					
19	Relative RF Phase Jitter (deg rms)	3.5 (for 2% luminosity drop) 0.069 49 (for 2% luminosity drop) 240 170 100 - 180 240 170 100 - 180 Cavity wakefield dependent 48.8, 61.7 5.2 (for 2% luminosity drop) 48.8, 61.7 0.35, 7.4 (for 2% luminosity drop)					
20	Timing Jitter (fs rms)	ie	49 (for 2% lumin	losity di	rop)	
21	Max Detuning (kHz)	240	170	100 - 180	240	170	100 - 180
23	Longitudinal impedance threshold (Ohm)	3	Cavi	ty wakefield	depen	dent	
24	Trasverse impedance threshold (MOhm/m) (X,Y)	ě		48.8, 61			
26	Cavity field rotation tolerance/cavity (mrad rms)	17	5.2 (for 2% lumir	nosity d	rop)	
27	Beam tilt tolerance (H and V) (mrad rms and urad rms)	#A	0.35, 7	.4 (for 2% lur			
28	Minimum CC beam-pipe aperture size (mm)			5 (same as Fl) magne	ets)	
29	Minimum Exraction beam-pipe aperture size (mm)	<u> </u>	3	20			
36			2	0.97, 66,			
37	Beta function at CC location (X, Y) (m,m)		<u> </u>	23200, 15	5400		
41	Horizonal kick factor (kx) (V/pC/m)		126/2023)	<< 1.6 x	10 ³		
42	Vertical kick factor (ky) (V/pC/m)		9	<< 1.2 x	10 ²		
43	CC System operation		assu	me CW-mod	le opera	ation	

Fermilab

- ILC CC key specifications adopted
- QMiR Cavity meets ALL SPECs (to be continued)

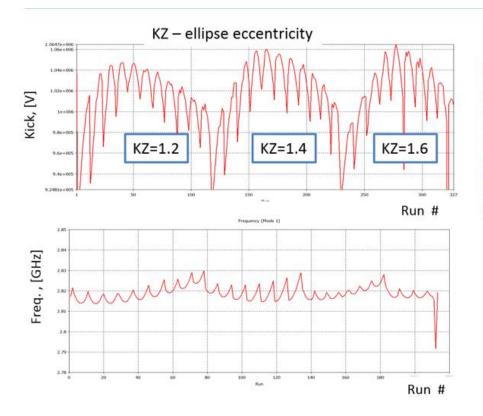
Space Requirements for the ILC Crabbing System

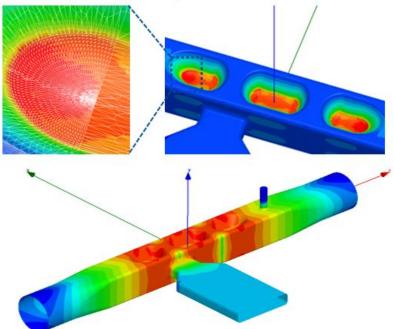


- The available space for ILC/CC system is limited
- The kick voltage is inverse proportional to frequency $(V_t \sim f^{-1})$
- Crab cavity @2.6 GHz looks like a good compromise to provide the necessary kick and fit into the space

🚰 Fermilab

5 04/05/23 A. Lunin | QMIR Crab Cavity for ILC


Superconducting Quasi-Waveguide Multicell Resonator (QMiR) for the Advanced Photon Source SPX Project


🚰 Fermilab

6 04/05/23 A. Lunin | QMIR Crab Cavity for ILC

QMiR Cavity EM Design

Operating trapped mode surface electric (up) and magnetic (down) fields

- ✓ Fully parametrized model
- ✓ General ellipsoid geometry of the electrodes
- ✓ Frequency derivations pre-calculated for each parameter
- Operating mode frequency preserved constant
- ✓ Global optimum search algorithm (~10k variations)

QMiR Cavity for ILC (2.6 GHz with increased aperture)

ILC Crab Cavity Aperture Limit: Ø25 mm Surface Magnetic Field Bp = 70 mTFreq 2600 MHz 0.92 MV **V**_{kick} $(R/Q)_{t}$ 225 Ω Ø25 **G**-factor 160 70 mT Bp, max Surface Electric Field 35 MV/m Ep, max □ 54 mm 0.24 J **W**_{STORED} Ep = 35 MV/mLength 500 mm 1000 HOM Transverse $R/Q, \Omega$ Red -- horizontal Blue -vertical 100 10 **QMIR KEY FACTS** \cap 1 ✓ Low surface fields 000 0.1 0 Strong SOM and HOM damping to WG and BP ports 0.01 HOM spectrum is sparse with low R/Q and Q \checkmark 00 4 QMiR cavities can provide 3.7 MV Kick (1 TeV option) \checkmark 0.001 2 3 4 5

🚰 Fermilab

Operating Dipole Mode

Electric Field Transverse electric (blue) and magnetic (red) field components along the cavity axis. 100 80 Εx Нy 60 40 E_X, [MV/m] 20 **Magnetic Field** 0 -20 -40 -60 -80 -100 50 0 100 150 200 250 300 350 400 450 500

Normalized Shunt Impedance (R/Q) Definition

$$\begin{pmatrix} \frac{R_{\parallel}}{Q} \end{pmatrix} = \frac{\left| \int_{-\infty}^{\infty} (E_z(r,z))_{r=r_0} e^{ikz} dz \right|^2}{\omega_0 W} \equiv \frac{|V_z|^2}{\omega_0 W}$$

$$\begin{pmatrix} \frac{R_{\perp}}{Q} \end{pmatrix} = \frac{\left| \int_{-\infty}^{\infty} (\vec{E}_t(r,z) + c\vec{z} \times \vec{B}_t(r,z))_{r=r_0} e^{ikz} dz \right|^2}{\omega_0 W} \equiv \frac{|V_t|^2}{\omega_0 W} \quad [\Omega]$$

Panofsky – Wenzel Theorem (PW)

$$\left(\frac{R_{\perp}}{Q}\right) = \frac{\left|\int_{-\infty}^{\infty} \left(\nabla_{\perp} \left(E_{z}(r,z)\right)\right)_{r=r_{0}} e^{ikz} dz\right|^{2}}{\omega_{0}W} \times \frac{1}{k^{2}}$$

(R/Q) $(R/Q)_{z}$ @r₀= 1 mm 0.68 Ω $(R/Q)_{X}$, LF 223 Ω $(R/Q)_{x}$, PW 225 Ω $(R/Q)_{\gamma}$, PW **8E-6** Ω

Distance, [mm]

60

40

20

0

-20

-40

-60

-80

H_y, [kA/m]

Operating Mode Cryogenic Budget

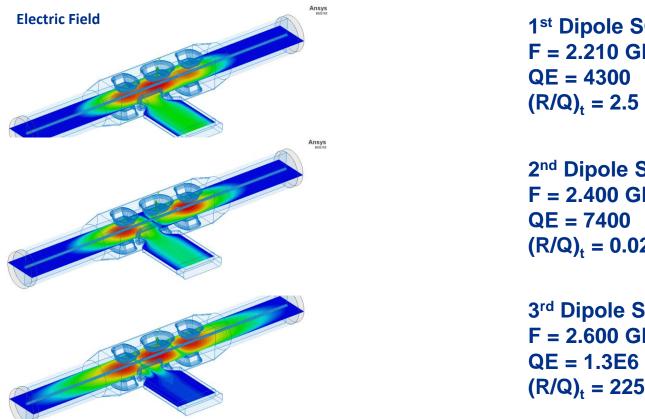
BCS surface resistance @2K

 $R_s(\omega,T) \propto A(\omega^2/T)e^{-[\Delta(T)/kT]}$

Cavity Cryogenic Loss

$$P_c = \frac{\omega_0 W_0 R_s}{G}$$

Typical measured Q0 in 1.3 GHz Nb cavities (XFEL, LCLS-II)


Material	Q0 @2K & 70mT			
	VTS	СМ		
Nb		> 1E10		
Nb, N-dopped		> 3E10		

Expected Surface Resistance and 2K Cryo-load

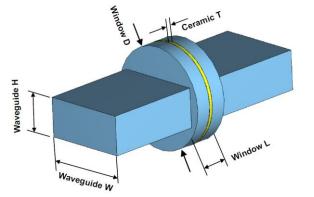
Material	Do mO	CW-operation		
	Rs, nΩ	P_c , W		
Nb	< 120	< 2.7		
Nb, N-dopped	< 40	< 1		

- We consider CW RF operation of the cavity with pulsed beam
- QMiR nominal cryo-load is expected to be as low as 1W with N-doping Nb treatment

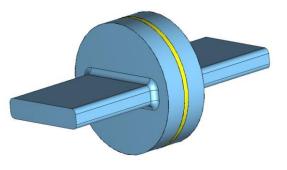
Same Order Modes (SOM) Damping

1st Dipole SOM F = 2.210 GHz $(R/Q)_{t} = 2.5 \Omega$

2nd Dipole SOM F = 2.400 GHz $(R/Q)_{t} = 0.02 \Omega$

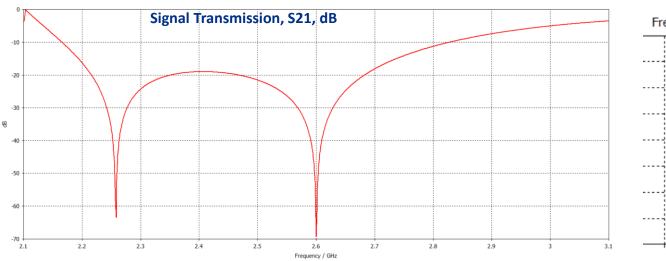

3rd Dipole SOM F = 2.600 GHz $(R/Q)_{t} = 225 \Omega$

🚰 Fermilab


- SOM are coupled to the input waveguide port
- The input coupler shall not compromise the SOM coupling

11 A. Lunin | QMIR Crab Cavity for ILC 04/05/23

Design of the Input Ceramic RF Window (by S. Kazakov)


Parameter	Value, mm
Window D	83
Window L	35.2
Ceramic T	4
Ceramic Eps	9.8
Waveguide W	71.14
Waveguide H	16

CC Window, waveguide 16mm.

S-Parameters [Magnitude]

S. Kazakov, 02/21/2023

Ghost Modes in Ceramic

 Mode 1 : 2.0055098

 Mode 2 : 2.3567004

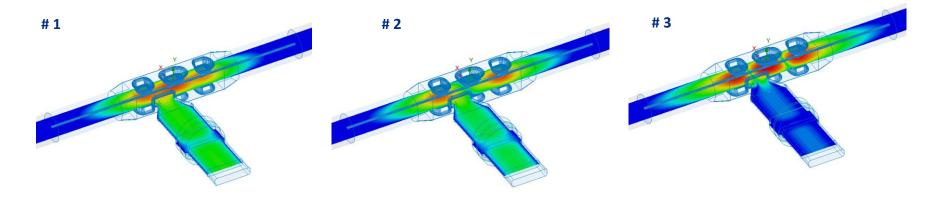
 Mode 3 : 2.539908

 Mode 4 : 2.6906657

 Mode 5 : 2.7167088

 Mode 6 : 2.9369586

 Mode 7 : 2.9729648

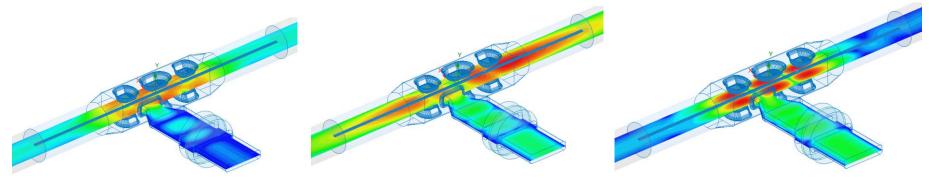

 Mode 8 : 3.2337269

 Mode 10 : 3.4126981

🚰 Fermilab

- Pillbox cylindrical $\lambda/2$ RF window
- Coupler "-10 dB" bandwidth > 650 MHz

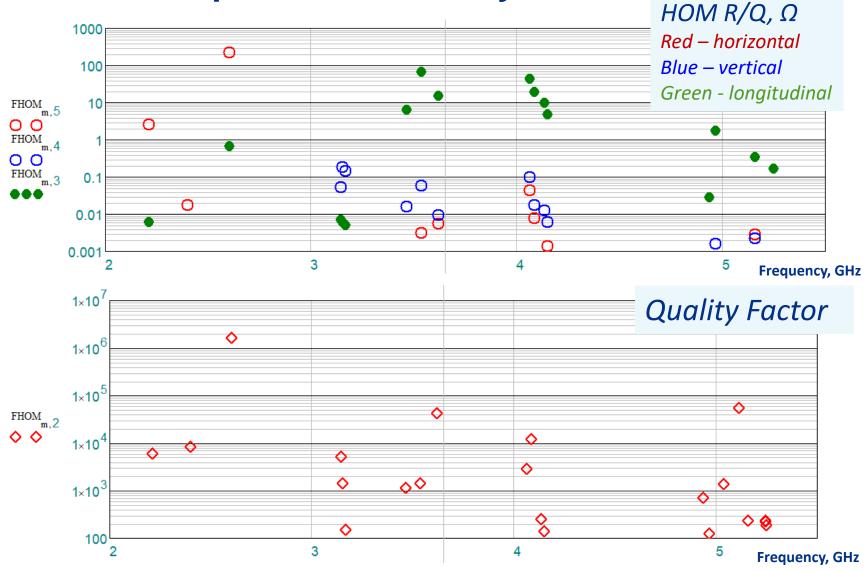
SOM Damping with Input RF Coupler


SOM #	External Coupling, QE				
	w/o coupler	with coupler			
1	4300	6000			
2	7400	8400			
3	1.3E6	1.3E6			

 Broadband design of the input ceramic window provides SOM coupling QE < 1E4

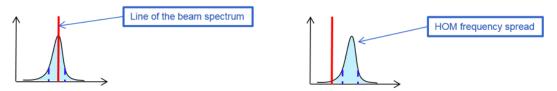
High Order Modes (HOM) Analysis

HOM with the highest quality factor



Monopole HOM F = 3.617 GHz QE = 4.3E4(R/Q)_Z = 15.6Ω Monopole HOM F = 4.085 GHz QE = 12.3E4(R/Q)_Z = 20Ω Quadruple HOM F = 5.112 GHz QE = 5.5E4 (R/Q)_t = 1E-4 Ω

- Only 20 HOMs with QE > 100 below 6 GHz frequency
- Maximum HOM QE < 6E4
- Maximum dipole HOMs (R/Q)_t < 0.2 Ω
- Monopole HOMs are mostly loaded the beam-pipe


QMiR HOM Spectrum Summary

QMiR HOM Resonant Beam Excitation

Stochastic HOM excitation by the pulsed beam*

* A. Lunin, et. al., Phys. Rev. Accel. Beams 21, 022001

Resonant steady-state HOM power and transverse voltage

$$\langle P \rangle_{max} = \frac{(R_{\parallel}/Q)\omega_0 q_0^2}{4t_b} \left(\frac{e^{\alpha}+1}{e^{\alpha}-1}\right) \qquad \qquad |V_{\perp}|_{max}^{r=r_0} = \frac{(R_{\perp}/Q)\omega_0 q_0 r_0 k}{4} \left(\frac{e^{\alpha}+1}{e^{\alpha}-1}\right)$$

where $\alpha = t_b/\tau$, t_b is the bunch spacing, $\tau = 2Q_L/\omega_0$ is the HOM signal decay time.

Resonant excitation condition: $t_b \ll \tau \rightarrow Q \gg t_b \omega_0/2$

For ILC beam: $t_b = 550 \text{ ns and } Q_{RESONANT} > 5000$

🛠 Fermilab

• NO high-Q resonant excitation of HOMs with QL < 1E4

16 04/05/23 A. Lunin | QMIR Crab Cavity for ILC

QMiR HOM Spectrum Summary

Frequency [MHz]	(R/Q) _x	(R/Q) _y	(R/Q) _z	Q _{ext}	P _{max} [W]
2121	2.5	-	6.1E-3	6000	3E-6
2400	0.02	-	1E-5	8400	-
2600	225	-	0.68	1.3E6	0.13
3144	-	0.05	7.1E-3	5200	-
3618	-	-	15.6	4.3E4	0.1
4085	-	-	19.9	1.2E4	0.03
5112	1E-4	-	1E-4	5.5E4	-
5954	2E-4	-	2E-4	6300	-

HOM with QE > 5000

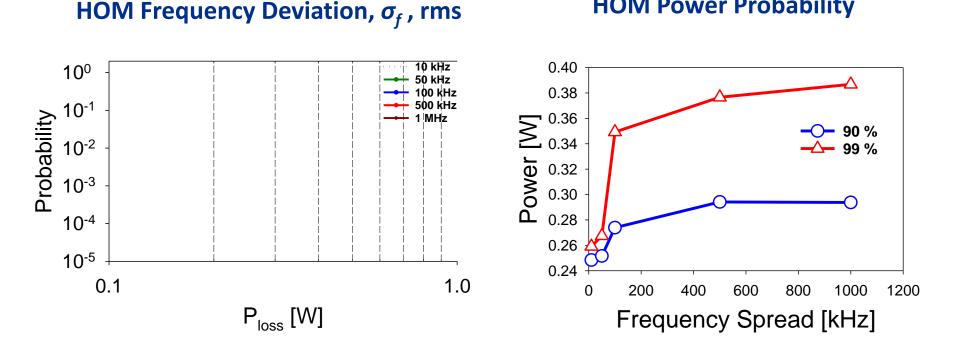
- HOM resonant excitation: Pmax = (R/Q)_z*Q*I_b^{2*}DF
- Maximum HOM power P_{max} < 0.1 W

QMiR HOM Statistical Analysis

Stochastic HOM excitation by the pulsed beam*

* A. Lunin, et. al., Phys. Rev. Accel. Beams 21, 022001

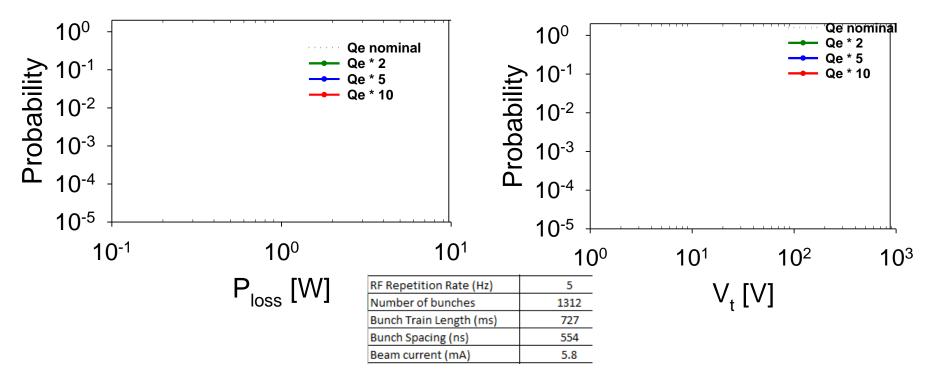
Off-resonance HOM excitation


$$\langle P \rangle = \frac{(R_{\parallel}/Q)\omega_0 q_0^2}{4t_b} A_{\infty} \qquad |V_{\perp}|_{x=x_0} = \frac{(R_{\perp}/Q)\omega_0 q_0 x_0 k}{4} A_{\infty}$$

 $A_{\infty}=2(e^{2\alpha}-2e^{\alpha}cos(\omega_0/f_b)+1)^{-0.5}+1$ is the resonant form-factor

- We calculated 100k cavities with random HOM spectra
- Statistic parameters with a normal distribution: Freq, Q-factor, R/Q

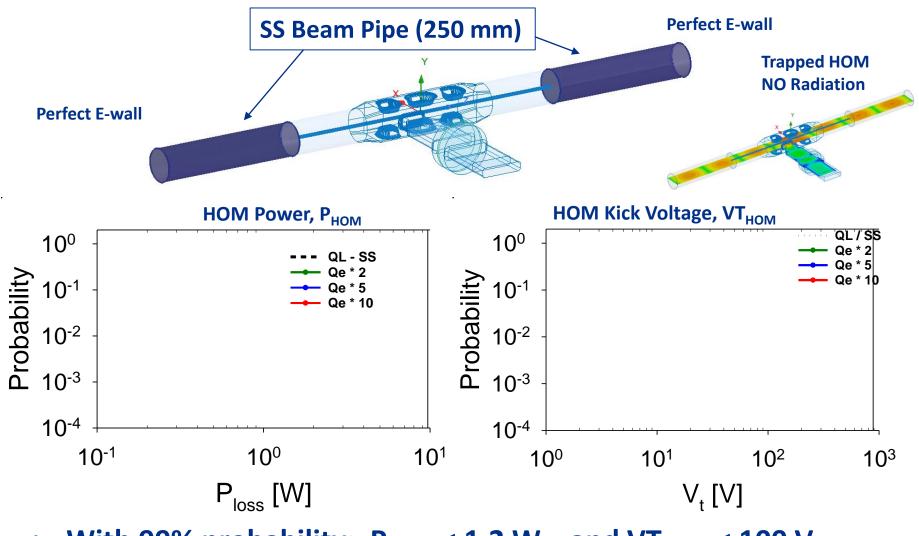
QMiR HOM Statistical Analysis


- Probability depends on HOM frequency spread and Q-factors
- For high-Q modes, the probability saturates if $1/\sigma_f > t_b/2$
- We conservatively consider $\sigma_f = 1$ MHz

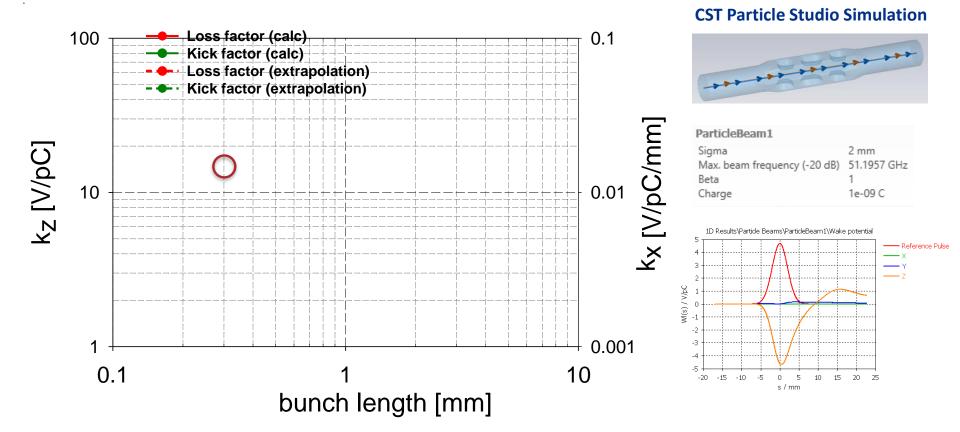
HOM Power Probability

QMiR HOM Statistical Analysis

HOM Power vs Q-factor


HOM Voltage vs Q-factor

- HOM parameters deviation : $\sigma_{R/Q} = 0.2^*(R/Q)$, $\sigma_F = 1$ MHz
- HOMs probability calculated only for external coupling (Qe)
- Beam offset taken +1mm
- With 99% probability: $P_{HOM} < 0.7 W$ and $VT_{HOM} < 40 V$


🛟 Fermilab

QMiR HOM Damping by Stainless Steel Sections

- With 99% probability: $P_{HOM} < 1.2 \text{ W}$ and $VT_{HOM} < 100 \text{ V}$
- E-wall (full reflection) worst-case and overestimated scenario
 Fermilab

QMiR Incoherent HOM Excitation

Estimated Loss and Kick factors: $k_z \le 15 \text{ V/pC}$, $k_x \le 0.02 \text{ V/pC/mm}$

🚰 Fermilab

Radiated wakefield power: $P = k_z q_0^2 N_b^* f_{rep} \approx 1 W$

Crab Cavity HOM Impedance Limits

Resonant HOM Excitation ($V_{HOM} = k_0 x_0 I_p r_{\perp}$) can cause:

- a) Crabbing voltage distortion $\left(\frac{r_{\perp}}{Q}\right) \equiv \frac{\left|\int_{-\infty}^{\infty} \left(\frac{\partial E_{Z}(x,0,z)}{\partial x}\right)_{x=0} e^{i\omega z/c} dz\right|^{2}}{Wk_{0}^{2}\omega_{0}} \equiv \frac{U_{kick}^{2}}{W\omega_{0}}$ [Ω]
 - HOM kick voltage should be less than the crabbing voltage (V_0)

 $V_{HOM}\sigma_z k_0 \ll V_0 \sigma_z \omega_{RF}/c$ or $r_\perp \ll \frac{V_0 \sigma_z \omega_{RF}/c}{k_0^2 x_0 I_p}$

- b) Beam emittance dilution
 - HOM kick should be less than the transverse momentum spread

$$V_{HOM}\sigma_z k_0 \ll \frac{\sigma_{p_{\perp}}c}{e} = \frac{p_{\parallel}c}{e} \sqrt{\frac{\varepsilon}{\gamma\beta}} \quad \text{or} \quad r_{\perp} \ll \frac{E}{k_0^2 x_0 \sigma_z I_p} \sqrt{\frac{\varepsilon}{\gamma\beta}}$$

For max beam offset @CC: $x_0 < \sigma_x$ and $y_0 < \sigma_y$

- Horizontal Shunt Impedance Limit

 $r_x f_{HOM}^2 \ll$ 9.6 GQ·GHz²

 $r_y f_{HOM}^2 \ll$ 0.7 G Ω ·GHz²

250 GeV is the most demanding regime for HOM damping

🔁 Fermilab

Crab Cavity Transverse Wakefields Limits

Incoherent CC excitation (single-bunch effect) can cause:

- a) Crabbing voltage distortion
 - Transverse kick should be less than the crabbing voltage

$$V_{kick} \ll V_0 \sigma_z \omega_{RF}/c$$
 or $k_\perp \ll rac{V_0 \sigma_z \omega_{RF}/c}{qx_0}$

- b) Beam emittance dilution
 - Transverse kick should not increase the bunch emittance

$$V_{kick} \ll \frac{\sigma_{p_{\perp}}c}{e} = \frac{p_{\parallel}c}{e} \sqrt{\frac{\varepsilon}{\gamma\beta}} \quad or \quad k_{\perp} \ll \frac{E}{qx_0} \sqrt{\frac{\varepsilon}{\gamma\beta}}$$

For max beam offset @CC: $x_0 < \sigma_x$ and $y_0 < \sigma_y$

Horizontal Kick Factor Limit $k_x << 1.60$ V/pC/mmVertical Kick Factor Limit $k_y << 0.12$ V/pC/mm

QMiR Cavity for ILC HOM & Wake Summary

Operation mode	$\left(\frac{r_{\perp}}{Q}\right) = 225 \ \Omega$
HOM/SOM	
Maximal dipole horizontal SOM	$\left(\frac{r_{\perp}}{Q}\right)_{\chi} = 2.5 \ \Omega \ (120 \ \Omega/m)$
	$(r_{\perp})_{\chi} \approx 0.7 \text{ M}\Omega/\text{m} \ll 49 \text{ M}\Omega/\text{m} \text{ (spec #24)}$
Maximal dipole vertical HOM	$\left(\frac{r_{\perp}}{Q}\right)_{y} = 0.05 \ \Omega \ (3.6 \ \Omega/m)$
	$(r_{\perp})_y \approx 0.02 \text{ M}\Omega/\text{m} \ll 62 \text{ M}\Omega/\text{m} \text{ (spec #24)}$

Wakefields	
Incoherent losses	$k_z \approx 15 \text{ V/pC}$ $P_{rad} \approx k_z q^2 n_b f_{rep} = 1 W$
Horizontal kick factor*	$k_x = 20 \text{ V/pC/m} \ll 1.6\text{E3} \text{ (spec #41)}$
Vertical kick factor*	$k_y = <1 \text{ V/pC/m} << 120 \text{ (spec #42)}$

• QMiR cavity meets the ILC/CC requirements on SOM/HOM impedance and kick factors

QMiR Cavity for ILC RF Power

- RF power needed to maintain the crabbing voltage should compensate
 - the ohmic losses in the cavity (negligible for SRF cavities)
 - voltage induced by the beam if the is off the cavity axis
- The maximal required RF power for the detuned cavity:

$$P = \frac{V_0^2}{4Q\left(\frac{r_{\perp}}{Q}\right)} \left[\left(1 + \frac{I_p Q\left(\frac{r_{\perp}}{Q}\right) k_0 x_0}{U_0}\right)^2 + \left(\frac{2Q\Delta\omega}{\omega_0}\right)^2 \right]$$

- For max beam offset $x_0 < 1$ mm and $\Delta f < 1$ kHz (LFD, microphonics)
 - Beam OFF: $P_{min} \approx 740 \text{ W}$ Optimal Coupling: $Q_L \approx 1.3 \times 10^6$ Beam ON & Microphonics: $P_{max} \approx 1500 \text{ W}$
- 3 kW Solid State RF amplifier will be sufficient at 100% overhead

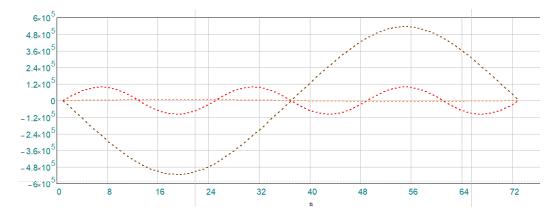
Cavity Detuning (NO Crabbing)

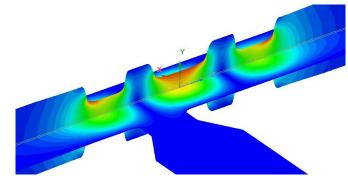
- If Crab-cavity is not in operation, the beam induced voltage should not affect the beam emittance:
 - cavity needs to be detuned
- Cavity off-resonance excitation:

$$V_{kick} = \frac{\omega_0^2}{\omega^2 - \omega_0^2 - i\frac{\omega\omega_0}{Q}} k_0 x_0 I_p \left(\frac{r_\perp}{Q}\right)$$

- If the cavity detune (Δf) is much larger than the bandwidth:

$$V_{kick} \approx \frac{1}{2m} k_0 x_0 I_p \left(\frac{r_\perp}{Q}\right) Q_L$$
, where $m \equiv \frac{|\Delta \omega|}{\omega_0} Q_L$


- Required detuning:


$$m \gg rac{\omega_0 x_0 I_p \left(rac{r_\perp}{Q}
ight) Q_L}{cE \sqrt{rac{arepsilon}{\gammaeta}}} pprox \mathbf{8}$$
 , or $\Delta f >> 16$ kHz

• Required frequency tuner range: F_{tuner} > 200 kHz

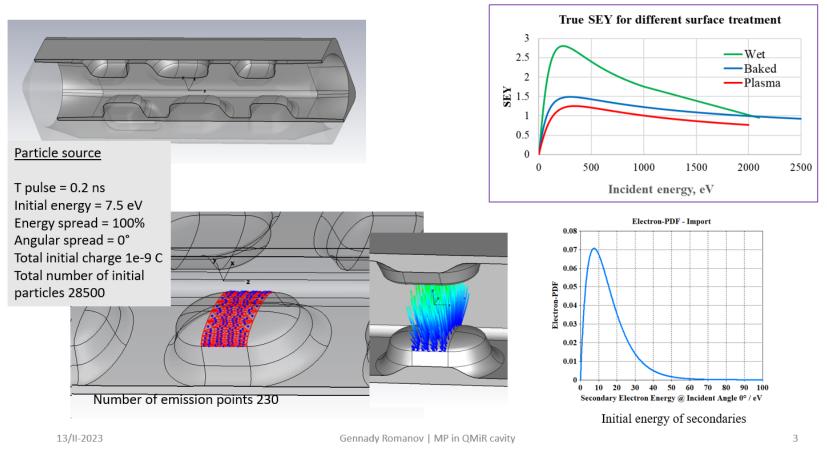
🎝 Fermilab

QMiR Multipole Components Calculation

$$a_n = \frac{in}{\omega \pi r^n} \int_0^{2\pi} \sin(n\varphi) \int_{-\infty}^{\infty} (E_z(r, z, \varphi))_{r=r_0} e^{ikz} dz d\varphi,$$

$$b_n = \frac{in}{\omega \pi r^n} \int_0^{2\pi} \cos(n\varphi) \int_{-\infty}^{\infty} (E_z(r, z, \varphi))_{r=r_0} e^{ikz} dz d\varphi.$$

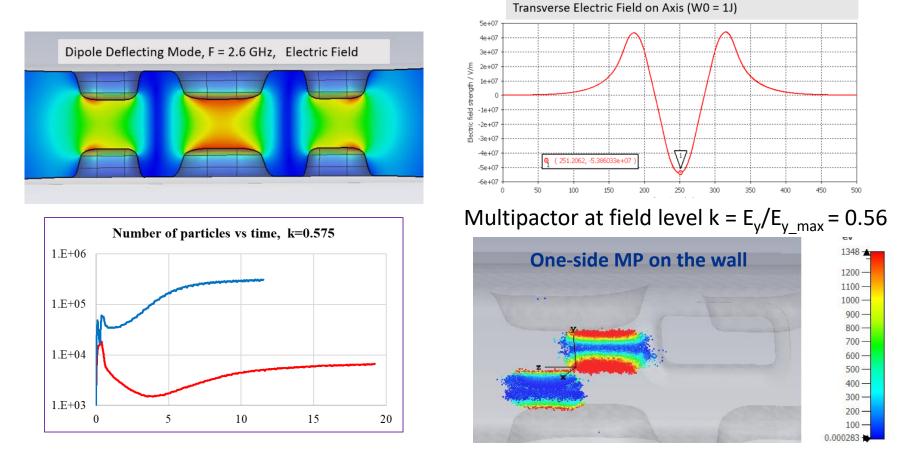
REF: J. Barranco Garcia et al., Phys. Rev. Accel. Beams 19, 101003 (2016)


Multipole Coefficients						
	Skew					
b ₁ ,	b ₂ ,	b ₃ ,	<i>a</i> ₁ ,	$ a_{3} ,$		
Tm	Tm/m	Tm/m ²	Tm	Tm/m	Tm/m ²	
4.3×10 ⁻⁵	6.2×10 ⁻³	4.1	1.4×10 ⁻⁴	7.9	12.9	

• Multipoles can be further reduced by flattening the electrodes

🛟 Fermilab

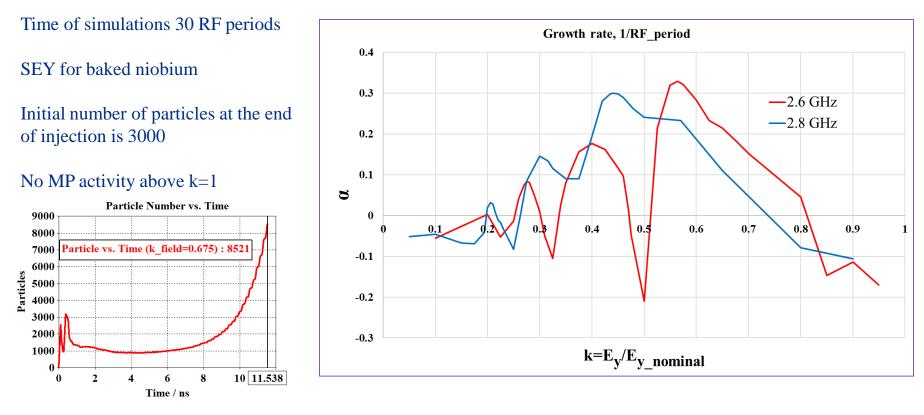
QMiR Multipactor Analysis (by G. Romanov)


PIC model of QMiR cavity

- Probabilistic MP simulation in CST Studio
- Compared ILC design (2.6 GHz) and ANL (2.8 GHz) of QMiR
- QMiR for ANL/SPX was tested in VTS, NO problem with MP

Fermilab

QMiR Multipactor Analysis (by G. Romanov)


Nominal Kick: 0.92 MV

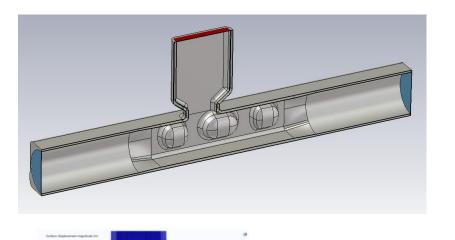
Stored Energy: $W_0 = 0.24 J$ Max Electric Field: $E_{\gamma} = 26 MV/m$ Max electric field E_{γ_max} is a reference field level parameter

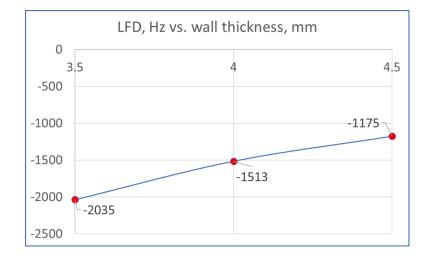
🛟 Fermilab

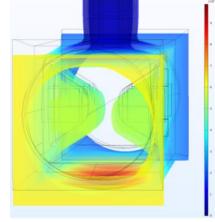
QMiR Multipactor Analysis (by G. Romanov)

Comparison of the MP in QMiR cavities

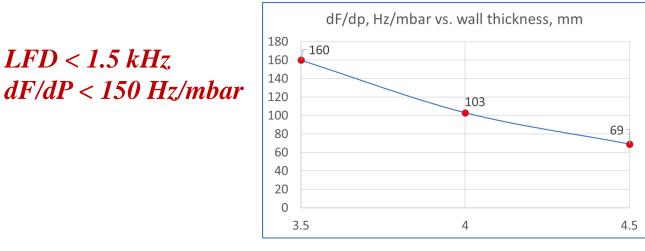
- Both QMiR designs exhibit the same MP behavior
- The ILC QMiR shows signs of MP at ~0.6 of the nominal gradient

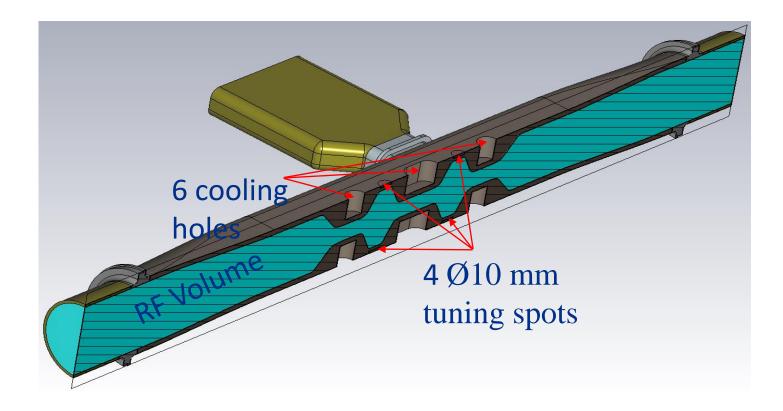

🚰 Fermilab


NO MP when operating with nominal gradient


31 04/05/23 A. Lunin | QMIR Crab Cavity for ILC

Mechanical Analysis LFD and dF/dP (by I. Gonin)


 $LFD < 1.5 \ kHz$

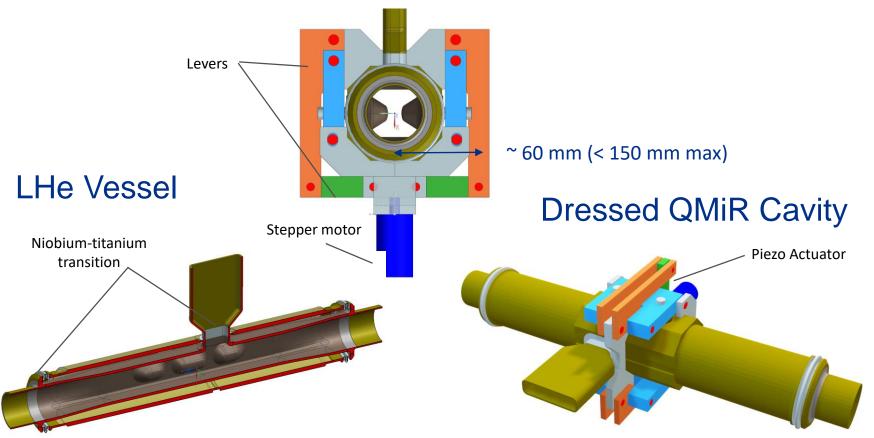

Deformation due to LFD

🚰 Fermilab

QMiR LFD and dF/dP are less than the cavity bandwidth (few kHz) LFD can be further reduced by adding rigid elements

Mechanical Analysis of Frequency Tuning (by I. Gonin)

- Introduced six hollow cooling channels
- Frequency tuner will require four contact area


Mechanical Analysis of Frequency Tuning (by I. Gonin)

	Thickness mm	Ave. gap change µm	Δf/ ΔForce kHz/kN	Δf/ ΔL kHz/µm	Δ σ/ΔForce Mpa/ kN
F/2 kN F/2 kN	3.5	74	-250.7	-33.8	27.6
9x12 mm 9x12 mm	4.0	56	-193.6	-34.5	21.8
	4.5	46	-155.1	-33.7	17.5

QMiR Cavity Slow Tuner Design (by V. Polubotko)

Compact double 2-lever frequency tuner

- Frequency tuner mechanical design concept is completed
- Fine tuning can be done with piezo actuators (like in LCLS-II).
- Tuner fits to the ILC-ML CC Envelope transverse space

🛟 Fermilab

QMiR Cavity Fine Tuner Design

Proposed Tunings system for QMiR cavity Slow/coarse tuner -Double lever tuner Fast/fine tuner- piezo-actuators

Titanium shaft with right and left threads Phytron stepper notor with gear box

Frame with two Double lever tuner running simultaneously with one stepper motor actuator... Shaft of the stepper actuator divided on the two half ... 1/2 shaft has left thread and second ½ shaft right thread... traveling nut will move in opposite directions Cavity parameters: df/dL ~45kHz/um

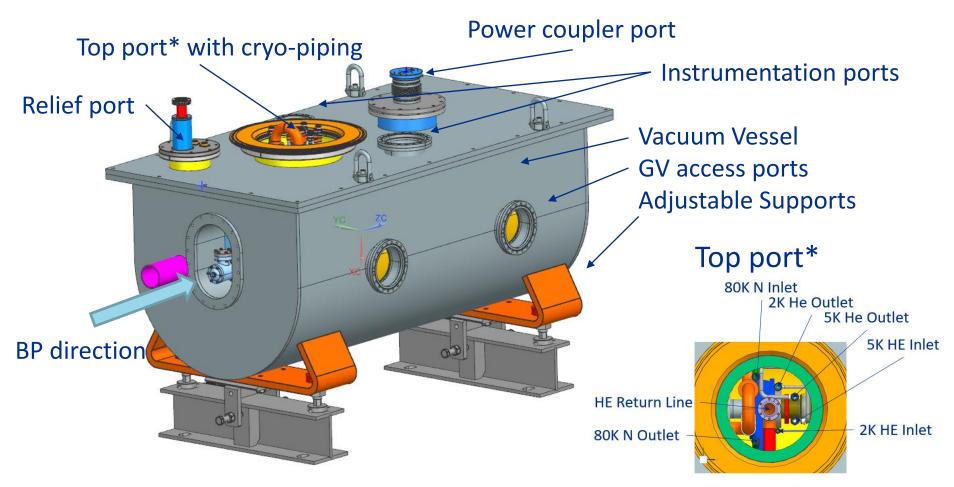
Parametrs fo the slow/coarse tuner					
Stepper	200	step/360°			
Planetary Gear Box	100	gear ratio			
Steps for 1mm stroke on shaft (M12X1)	20000	steps			
Doubler lever ratio	10				
Cavity compression/stroke per 1 steps	5	nm			
cavity tuning per one step	200	Hz			

Slow tuner range > 1 MHz...

Cavity re-tuning at V=100V

piezo-actuator with adjustment screw

Fine tuning will be done with encapsulated piezo actuators (similar used at LCLS II). Adjustment screw will help uniformly loading each of 4 piezo actuators (one actuator per each cavity knob)

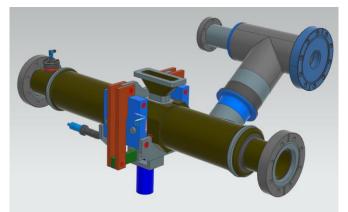

Parametrs fo the fast/fine tuner 10*10*5 mm*mm*mm Piezo-stack Stroke at T=20K & V=100V 0.5 um

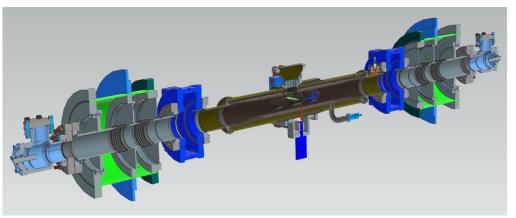
20

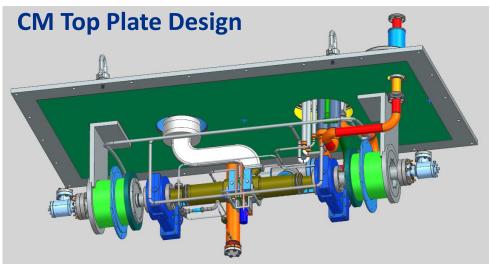
Yu. Pischalnikov 12/07/21

kHz

Design based on existing Capture Cavity CM

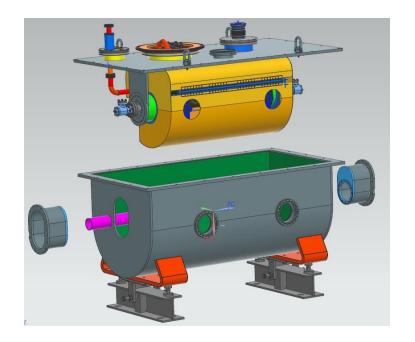

View on the Top port

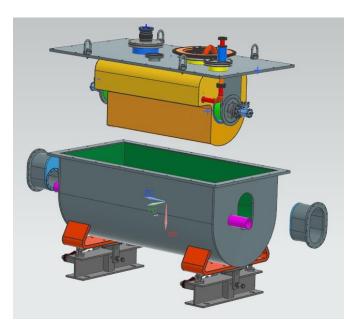

- proven mechanical solutions, tested @FAST facility at Fermilab
- Cryogenic system (heat exchanger, He-lines) is similar to FAST CM


7 Fermilab

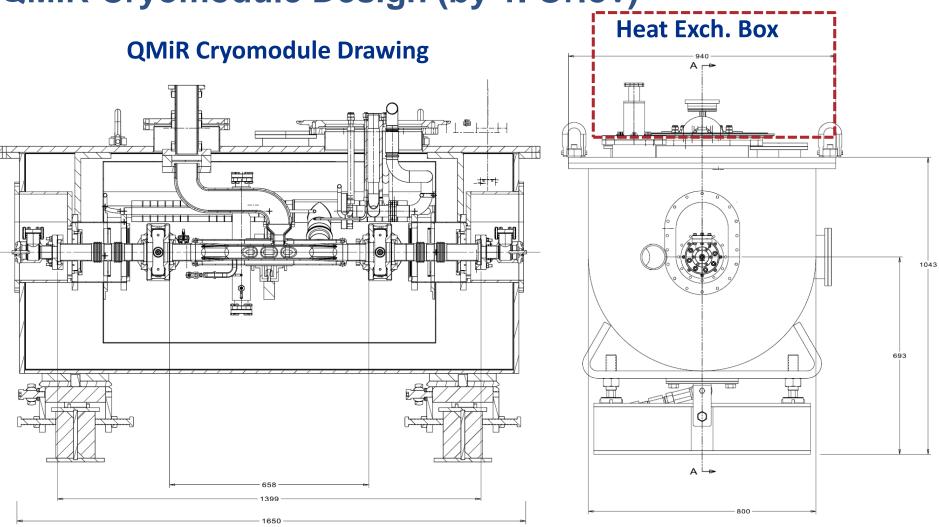
Dresses Cavity with 2K Pipe

Cavity Integration with Beam Line

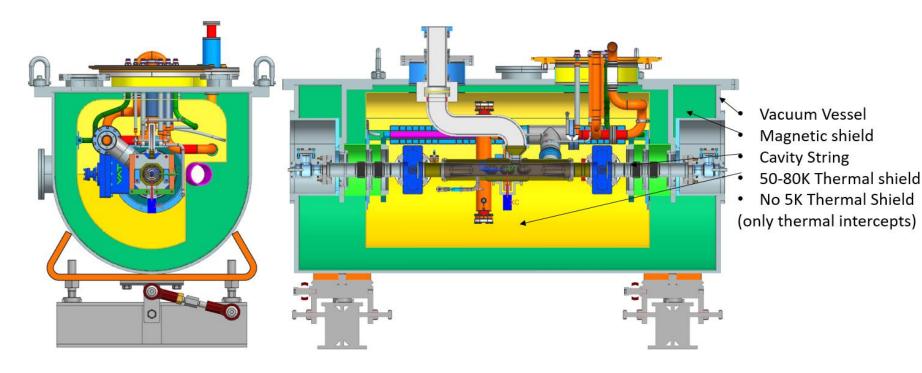




- Top plate support of the cryo-string
- Compact design of the Input Coupler

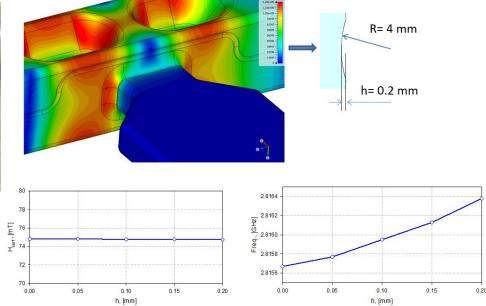

Top Assembly Scheme

- CM assembly sequence and procedure is developed
- Clean room and alignment procedures are similar to FAST/CC



Cryomodule space required: ~ 1650 x 1000 x 1500 mm

QMiR Cryomodule Sectional Views (by Y. Orlov)

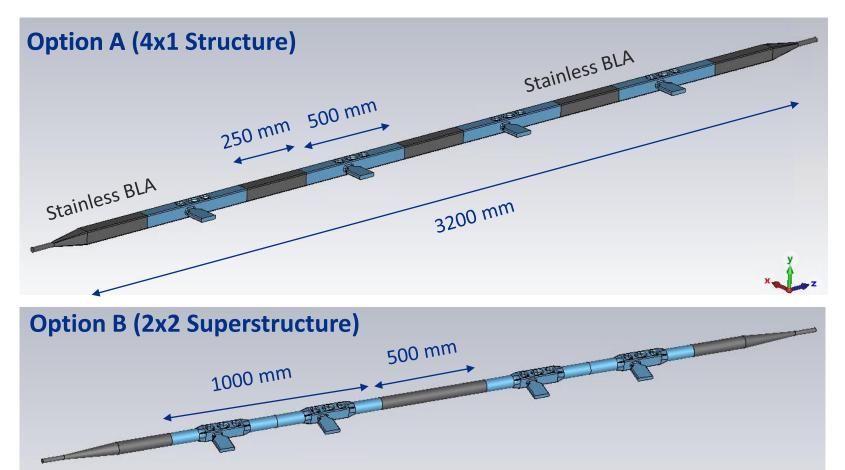

- CM concept design is ready
- CM fits ILC technical requirements and environment limitations
- Internal alignment system and oversized backward beam pipe allow external adjustment of the cavity position (precision ± 0.1 mm)
- Design of the vacuum vessel and piping complies with safety codes

莽 Fermilab

QMIR Cavity Production

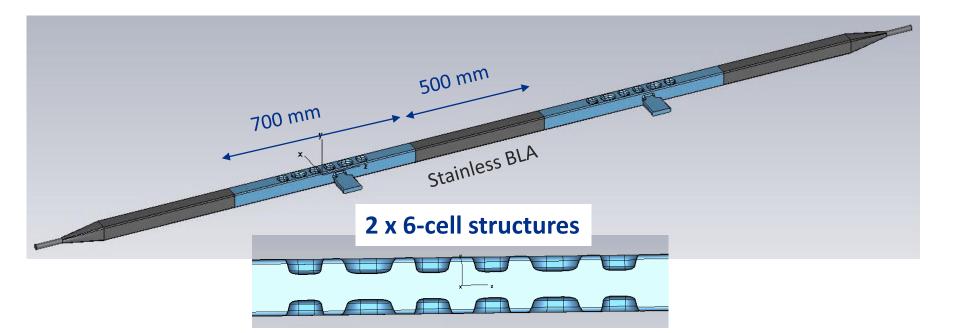
QMiR 2.8 GHz Bare Cavity

Minimal Effect of the Weld on H-field Enhancement


• Cavity parts can be machined from

Nb Ingot of Ø 80mm x 500 mm about 25 kg Nb for prototype

- Parts are milled with high precision
- Electron Beam (EB) welding of Nb parts is required
- Cavity manufacturing is similar to ANL/SPX QMiR


QMiR Cavity String for 1 TeV ILC

- Two options are considered, a chain of 1x4 and 2x2 cavities
- Simple stainless-steel inserts to damp HOMs
- Total estimated HOM power for 1 TeV < 5 W

QMiR Multicell Cavity for 1 TeV ILC (R&D Option)

- Multicell Structure can be more compact and efficient solution
- (R/Q) are typically very low for trapped HOM and SOM
 - long distributed field structure without synchronism
- R&D study is needed to verify the 6-cell QMiR performance

Conclusions

QMIR is a good option for the ILC Crab Cavity

- design is very compact (<0.5 m) and simple;
- sparse HOM spectrum and small loss/kick factors;

QMiR re-optimized for a larger aperture of 25 mm

- At a nominal deflecting voltage of 0.9 MV the cavity surface fields, $E_p \approx 35$ MV/m, $B_p \approx 70$ mT, meet the ILC/CC specifications.
- 4 QMiR can provide 3.7 MV kick total for 1 TeV ILC option
- SOM/HOM damped to meet ILC requirements (with SS sections)
- NO problems with MP and thermal breakdown
- Initial mechanical design of QMiR cavity and CM completed
- LFD and dF/dP meet the requirements
- The concept of a double 2-lever frequency proposed
- Concept of the top loaded compact CM proposed (CC-CM type)

🎝 Fermilab

Fermilab can design, build and test the QMIR cavity and CM

Preliminary Plans for further development of QMiR CM

Cavity Production and Testing

- Validation of mechanical concepts;
- Cavity detailed mechanical design and drawings preparation;
- Cavity prototype manufacturing (two cavities, RI or Zanon);
- Cavity processing and high-gradient VTS tests (Fermilab, ANL)
- Cavity jacketing with He-vessel (Fermilab, SCIAKY, ROARK, ...)

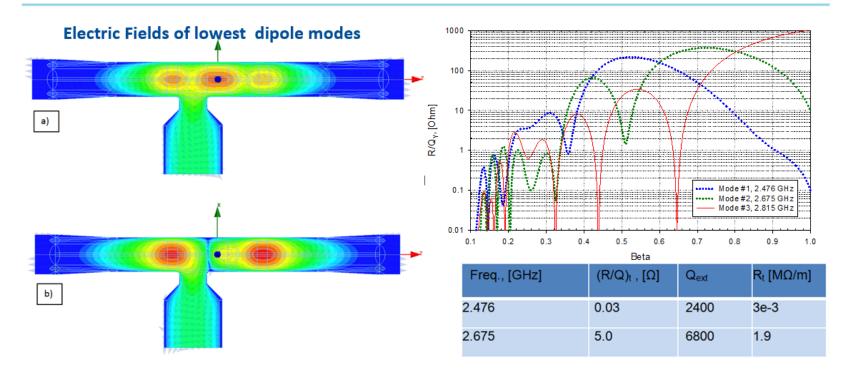
Cryomodule Production and Testing

- Coupler manufacturing (CPI, good experience with PIP-II HPCs
- Frequency tuner design, manufacturing and tests (Fermilab, good experience with ILC, LCLS II and PIP II tuners)
- Fully equipped cavity High Power tests (HTC, Fermilab)
- Cryo-vessel mechanical design and manufacturing (Fermilab)
- Cryomodule integrated High Power RF test (Fermilab)

Fermilab is open for collaboration with other laboratories – KEK, ANL, JLAB, BNL, Daresbury ...)

QMiR is considered as a deflecting cavity for Elettra-II upgrade

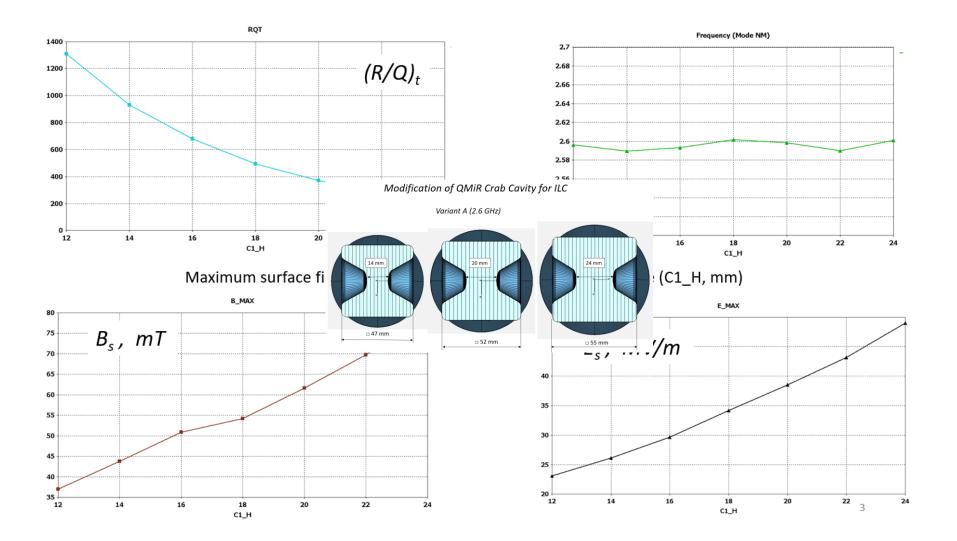
MANY THANKS


TO KEK FOR HOSTING THE MEETING

- TO COLLEGUES FROM OTHER LABS FOR FRUITFUL DISCUSSIONS
- **TO ALL FERMILAB COLLEGUES WHO MADE** VALUABLE INPUTS TO THIS PRESENTATION

Backup Slides

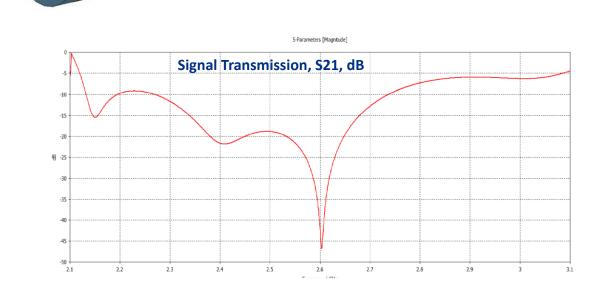
Same Order Mode (SOM) Damping



- The fundamental coupler waveguide is used to suppress SOM modes
- The FPC is purposely shifted from the cavity center in order to provide external coupling for the operating mode and damping lower frequency dipole modes simultaneously

🚰 Fermilab

Backup Slides



Fermilab

Design of the Input Ceramic RF Window (by S. Kazakov)

Parameter	Value, mm
Window D	98
Window L	36.6
Ceramic T	4
Ceramic Eps	9.8
Waveguide W	72.14
Waveguide H	16

Broadband impedance matching

Thermal Quench Analysis

A. Lunin, et. al., Physics Procedia Vol. 79, 54 -62, 2015

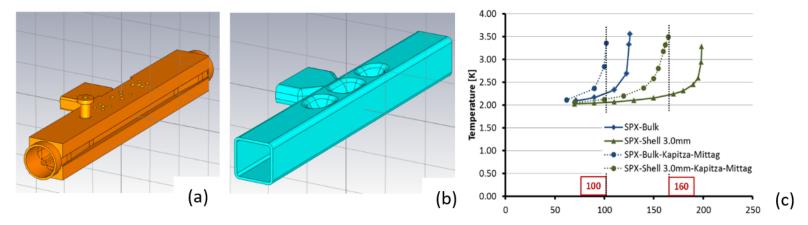
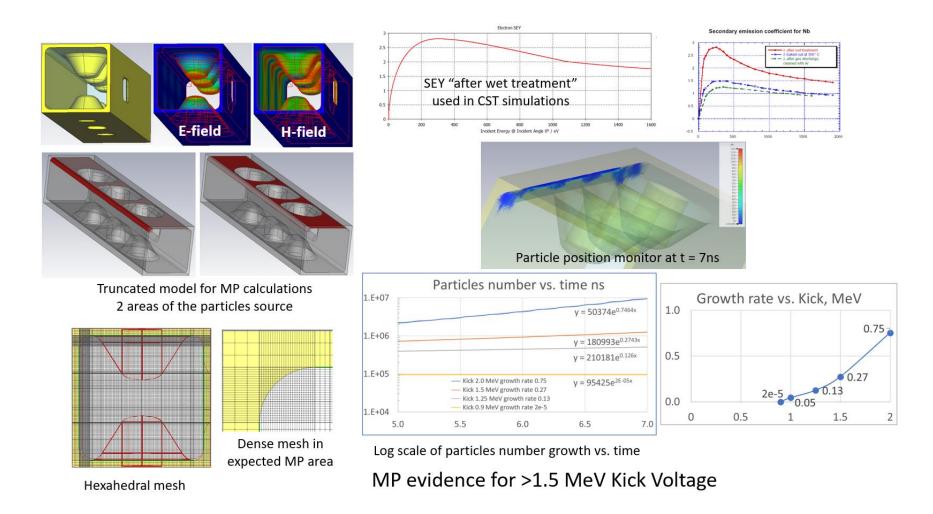



Figure 8. Thermal quench analysis of the QMiR cavity. (a) Cavity model made of bulk Niobium. (b) Cavity model made of 3 mm Niobium shell. (c) Maximum temperature vs peak magnetic field demonstrating thermal quench results for both structure.

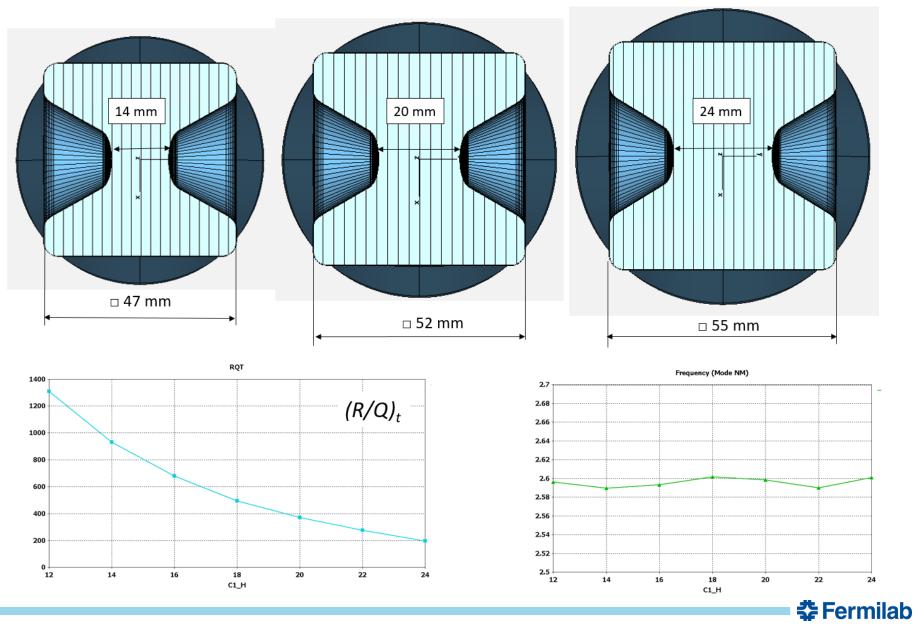
Bulk Nb cavity is projected to quench at >100 mT

QMiR Multipactor Analysis (by I. Gonin)


🛟 Fermilab

52 04/05/23 A. Lunin | QMIR Crab Cavity for ILC

ANL QMiR Cavity Frequency Tuning


Operation	Frequency Shift [MHz]	Expected Frequency [MHz]
Body Trimming*		2958 ± 10
1 st Freq. Tuning**	- 156.6 (max)	2811.4 ± 0.1
EB Welding: Weld Shrinkage Weld Bump	± 5.7 + 1	
Freq. check after EBW		2812.4 ± 5.7
Chemical Polishing: even NB removal +50% on electrodes	- 4 + 2	
Freq. check after CP		2812.4
2 nd Freq. Tuning***	± 9.7 (max)	2811.4 ± 0.1
Cooling Down to 2K	+ 4	2815.4

- * Assuming additional +0.125" cavity height
- ** Trimming cavity body half, df/dhc ~ -46 MHz/mm
- *** Plastic deformation of all 3 electrodes, df/dhe ~ -75 MHz/mm

Fermilab

Scaling of QMiR Crab Cavity for ILC

54 01/26/23 A. Lunin | QMIR Crab Cavity for ILC