The virtual γ saga, part II and end

Mikael Berggren¹

¹DESY, Hamburg

ILD SW&ANA phone meeting

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Mikael Berggren (DESY)

The virtual γ saga, part II and end

2023-02-15 1/15

- The process e⁺e⁻ → e⁺e⁻ + f̄ is difficult to generate: If the 4-momentum transfer between incoming and outgoing e⁺⁽⁻⁾ (= q ≈ the scattering angle) becomes small, the process is dominated by scattering of virtual γ:s radiated off the e⁺⁽⁻⁾
- It becomes very hard to evaluate the phase-space integral from the full M.E. treatment, and event-generation becomes very slow.
- At some lowest *q*, we switch from the M.E. treatment to the equivalent photon approximation (EPA), where the flux of virtual (or better "quasi-real") photons is evaluated, and the process becomes γγ → ff, i.e. a 2 → 2 process.
- NB: In both cases, there is a minimum M_{ff} (4 GeV for e:s, 2×M_τ for τ:s, 10 GeV for quarks. For μ:s either 4 GeV or 2×M_μ)

HOWEVER

- The regions didn't match !
- A jump \sim factor 1/2 for each $e^{+(-)}$ replaced by an EPA...
- Also the shapes at the junction are different...

HOWEVER

- The regions didn't match !
- A jump \sim factor 1/2 for each $e^{+(-)}$ replaced by an EPA...
- Also the shapes at the junction are different...

HOWEVER

- The regions didn't match !
- A jump \sim factor 1/2 for each $e^{+(-)}$ replaced by an EPA...
- Also the shapes at the junction are different...

HOWEVER

- The regions didn't match !
- A jump \sim factor 1/2 for each $e^{+(-)}$ replaced by an EPA...
- Also the s So: are differe All channels with at least one initial virtual γ was therefore deferred to later in the 250 GeV mass-production! 15 20 30²⁵ 30³⁵ 40³⁵ 35 40 45 50

45

a ena 1Xa ena 2 as Entries

Mean y

Mean y

Std Dev x 8.343 Std Dev v 8.385

497800

2.856

2 887

q_epa_1:q_epa_2_aa

< ロ > < 同 > < 回 > < 回 >

HOWEVER

- The regions didn't match !
- A jump \sim factor 1/2 for each $e^{+(-)}$ replaced by an EPA...
- Also the s So: are differe All channels with at least one initial virtual γ was therefore deferred to later in the 250 GeV mass-production! 15 20 30²⁵ 30³⁵ 40³⁵ Later is NOW 40 45 50 35

45

a ena 1Xa ena 2 as Entries

Mean y

Mean y

Std Dev y 8.343

Std Dev y 8.385

497800

2.856

2 887

q_epa_1:q_epa_2_aa

The virtual γ saga: Problem solved!

- Wolfgang Kilian (WHIZARD author) confirmed:
 - There was indeed a factor ≡ 2 missing per virtual photon if beam-polarisation is on in WHIZARD V2.X.
 - Fixed in WHIZARD V3.X
- It is clear that the cut in Q^2 between the M.E. and the EPA generation of $e^+e^- \rightarrow e^+e^- + X$ was too high wrt the cut on m_X .
- This I've studied, and found that $\sqrt{|Q^2|} = 0.05$ is a good separation, even for a cut m_X at 4. The cut in $\sqrt{|Q^2|}$ in the existing M.E. samples is at 4, so there is a missing part for $\sqrt{|Q^2|} \in [0.05, 4]$ (NB: A year ago, I found that 0.2 would work, but further scrutiny showed that it still was to high :()
- Tip from Filip:
 - There is a way to emulate an OR in the cuts-definition in the sindarin ($a \lor b \Leftrightarrow \neg(\neg a \land \neg b) \dots$) \Rightarrow The "L-shaped" missing phase-space in the M.E. part of $e^+e^- \rightarrow e^+e^- + X$ can be generated in a single step.

The virtual γ saga: Problem solved!

- Wolfgang Kilian (WHIZARD author) confirmed:
 - There was indeed a factor ≡ 2 missing per virtual photon if beam-polarisation is on in WHIZARD V2.X.
 - Fixed in WHIZARD V3.X
- It is clear that the cut in Q² between the M.E. and the EPA generation of e⁺e⁻ → e⁺e⁻ + X was too high wrt the cut on m_X.
- This I've studied, and found that $\sqrt{|Q^2|} = 0.05$ is a good separation, even for a cut m_X at 4. The cut in $\sqrt{|Q^2|}$ in the existing M.E. samples is at 4, so there is a missing part for $\sqrt{|Q^2|} \in [0.05, 4]$ (NB: A year ago, I found that 0.2 would work, but further scrutiny showed that it still was to high :()
- Tip from Filip:
 - There is a way to emulate an *OR* in the cuts-definition in the sindarin ($a \lor b \Leftrightarrow \neg(\neg a \land \neg b) \dots$) \Rightarrow The "L-shaped" missing phase-space in the M.E. part of $e^+e^- \rightarrow e^+e^- + X$ can be generated in a single step.

The virtual γ saga: Problem solved!

- Wolfgang Kilian (WHIZARD author) confirmed:
 - There was indeed a factor ≡ 2 missing per virtual photon if beam-polarisation is on in WHIZARD V2.X.
 - Fixed in WHIZARD V3.X
- It is clear that the cut in Q² between the M.E. and the EPA generation of e⁺e⁻ → e⁺e⁻ + X was too high wrt the cut on m_X.
- This I've studied, and found that √|Q²| = 0.05 is a good separation, even for a cut m_X at 4. The cut in √|Q²| in the existing M.E. samples is at 4, so there is a missing part for √|Q²| ∈ [0.05, 4] (NB: A year ago, I found that 0.2 would work, but further scrutiny showed that it still was to high :()
- Tip from Filip:
 - There *is* a way to emulate an *OR* in the cuts-definition in the sindarin (a ∨ b ⇔ ¬(¬a ∧ ¬b) ...) ⇒ The "L-shaped" missing phase-space in the M.E. part of e⁺e⁻ → e⁺e⁻ + X can be generated in a single step.

Mikael Berggren (DESY)

Final cuts

- For both $\sqrt{|Q^2|} > 2$, M.E. : No cuts, except default $m_{f\bar{f}}$. No cut on $m_{\mu^+\mu^-}$
- For both $\sqrt{|Q^2|} > 0.05$ and at least one $\sqrt{|Q^2|} < 2$, M.E.: As above, except $m_{\mu^+\mu^-} > 4$
- For one $\sqrt{|Q^2|} > 0.05$ and one $\sqrt{|Q^2|} > 0.05$, γ^*e : As above, and $\Delta(\eta_{f\bar{f}}) < 6.2626$.
 - The pseudo-rapidity distance cut corresponds to $\theta > 7^{\circ}$ if the $f\bar{f}$ -system would be at rest in the lab. Guarantees that at least one of them is in the tracker after boosting the *ff*-system to the lab.
- For both $\sqrt{|Q^2|} > 0.05, \gamma^* \gamma^*$: As above.

Additional cuts for the plots

- "Leptonic" means μ:s or τ:s, not electrons: In e⁺e[−] → e⁺e[−]e⁺e[−], between which electrons or positrons should the Q² be calculated ?
- For the same reason, there is no $\Delta(\eta_{f\bar{f}})$ in the M.E. cases: which e^+e^- pair is the " $f\bar{f}$ "-pair in $e^+e^- \rightarrow e^+e^-e^+e^-$?
- So, we demand that one (or two) of the final fermions are above 7° to the beam to be able to compare the M.E. regions with γ* ones.
- Sometimes -Q² comes out negative in the γ* cases (never in the M.E. ones) probably because m_e was neglected in my math :(. Therefore it was demanded that -Q² > 0, and the γ* samples were weighted up by the corresponding loss of events.

Q^2 vs. Q^2

- Full range ($\gamma\gamma$, e⁺/e⁻ γ and M.E. high and low Q²)
- Transition M.E. high and low *Q*² (=16)
- Transition M.E. to EPA (= $2.5 \cdot 10^{-3}$)

Q^2 vs. Q^2

- Full range ($\gamma\gamma$, e⁺/e⁻ γ and M.E. high and low Q²)
- Transition M.E. high and low *Q*² (=16)
- Transition M.E. to EPA (= $2.5 \cdot 10^{-3}$)

Q^2 vs. Q^2

- Full range (γγ, e⁺/e⁻γ and M.E. high and low Q²)
- Transition M.E. high and low Q² (=16)
- Transition M.E. to EPA (= $2.5 \cdot 10^{-3}$)

Q^2 vs. Q^2

- Full range (γγ, e⁺/e⁻γ and M.E. high and low Q²)
- Transition M.E. high and low *Q*² (=16)
- Transition M.E. to EPA (= $2.5 \cdot 10^{-3}$)

A (10) A (10) A (10)

Q^2 vs. Q^2

- Full range (γγ, e⁺/e⁻γ and M.E. high and low Q²)
- Transition M.E. high and low Q² (=16)
- Transition M.E. to EPA (= $2.5 \cdot 10^{-3}$)

< ロ > < 同 > < 回 > < 回 >

Q^2 vs. Q^2

- Full range (γγ, e⁺/e⁻γ and M.E. high and low Q²)
- Transition M.E. high and low Q² (=16)
- Transition M.E. to EPA (= $2.5 \cdot 10^{-3}$)

< ロ > < 同 > < 回 > < 回 >

Q^2 vs. Q^2

- Full range (γγ, e⁺/e⁻γ and M.E. high and low Q²)
- Transition M.E. high and low Q² (=16)
- Transition M.E. t(EPA (= 2.5 · 10⁻³)

Blow up the lower transition region, by plotting against the logarithm of $|{\it Q}^2|$ (lg(0.05^2) = -2.60)

- Leptonic...
- Demand that both fermions are above 7°.
- Hadronic...
- Demand that both fermions are above 7°.

イロト イヨト イヨト イヨト

Blow up the lower transition region, by plotting against the logarithm of $|Q^2|$ (Ig(0.05²) = -2.60)

- Leptonic...
- Demand that both fermions are above 7°.
- Hadronic...
- Demand that both fermions are above 7°.

イロト イヨト イヨト イヨト

Blow up the lower transition region, by plotting against the logarithm of $|Q^2|$ (Ig(0.05²) = -2.60)

- Leptonic...
- Demand that both fermions are above 7°.
- Hadronic...
- Demand that both fermions are above 7°.

イロト イヨト イヨト イヨト

Blow up the lower transition region, by plotting against the logarithm of $|Q^2|$ (Ig(0.05²) = -2.60)

- Leptonic...
- Demand that both fermions are above 7°.
- Hadronic...
- Demand that both fermions are above 7°.

< ロ > < 同 > < 回 > < 回 >

$\lg |Q^2|$ vs. $\lg |Q^2|$

Blow up the lower transition region, by plotting against the logarithm of $|Q^2|$ (Ig(0.05²) = -2.60)

• Leptonic... P4f_sze_sl_gc10 Demand that both fermions are 180 above 7°. 160 140Hadronic... So all does looks fine ... Demand that bot. fermions are 20above 7°. -3 709/02 -1 909 -1 909 -300 109(70) -3 -2 log(q_epa_9)/log(10)1

In all plots: black = aa, red = ae, green = M.E., low Q^2 , and blue = M.E., high Q^2 .

- Muon p
- Muon p_T
- Di-muon mass
- Di-muon mass, both μ:s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu\mu}$ close to $m_Z \Rightarrow$ Higgs to invisible, anyone ?

In all plots: black = aa, red = ae, green = M.E., low Q^2 , and blue = M.E., high Q^2 .

- Muon p
- Muon *p_T*
- Di-muon mass
- Di-muon mass, both μ:s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu\mu}$ close to $m_Z \Rightarrow$ Higgs to invisible, anyone ?

< ロ > < 同 > < 回 > < 回 >

In all plots: black = aa, red = ae, green = M.E., low Q^2 , and blue = M.E., high Q^2 .

- Muon p
- Muon *p_T*
- Di-muon mass
- Di-muon mass, both μ:s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu\mu}$ close to $m_Z \Rightarrow$ Higgs to invisible, anyone ?

< ロ > < 同 > < 回 > < 回 >

In all plots: black = aa, red = ae, green = M.E., low Q^2 , and blue = M.E., high Q^2 .

- Muon p
- Muon *p_T*
- Di-muon mass
- Di-muon mass, both μ:s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu\mu}$ close to $m_Z \Rightarrow$ Higgs to invisible, anyone ?

In all plots: black = aa, red = ae, green = M.E., low Q^2 , and blue = M.E., high Q^2 .

- Muon p
- Muon p_T
- Di-muon mass
- Di-muon mass, both μ:s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu\mu}$ close to $m_Z \Rightarrow$ Higgs to invisible, anyone ?

In all plots: black = aa, red = ae, green = M.E., low Q^2 , and blue = M.E., high Q^2 .

- Muon p
- Muon *p_T*
- Di-muon mass
- Di-muon mass, both μ:s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu\mu}$ close to $m_Z \Rightarrow$ Higgs to invisible, anyone ?

Paa_2f_z_I_020

Cross-sections of new samples

sample	leptonic	hadronic	# Mevents generated		
	pb	pb	(\sim 1 ILC year)		
aa_2f	9234	414	1259		
ae_3f	1426	136	142		
ea_3f	1427	137	142		
4f_szeloq (LL and RR)	1117	172	54		
4f_szeloq (LR and RL)	1123	175	276		
Total			1873		

The generated events are on the grid.

Note that the standard assumptions is *a lot*. The $5/1/1/5 \text{ ab}^{-1}$ for the "normal" samples is ~ 10 times the full H20 statistics, and the reduced 1/0.2/0.2/1 is still more than the 11 years of H20 running, except for aa_2f, where it is about 1/2 of H20.

< ロ > < 同 > < 回 > < 回 >

For aa_2f:

- Just 0.04 % of the events will have a beam-remnant seen in the BeamCal, and then it only deposits a few GeV.
- The energy of the $f\bar{f}$ system, for events where both *f*:s are above 7 deg.
- So, typically there is only a few GeV that hits anything in these events.

For aa_2f:

- Just 0.04 % of the events will have a beam-remnant seen in the BeamCal, and then it only deposits a few GeV.
- The energy of the $f\bar{f}$ system, for events where both *f*:s are above 7 deg.
- So, typically there is only a few GeV that hits anything in these events.

A (10) A (10) A (10)

For aa_2f:

- Just 0.04 % of the events will have a beam-remnant seen in the BeamCal, and then it only deposits a few GeV.
- The energy of the *f* \bar{f} system, for events where both *f*:s are above 7 deg.
- So, typically there is only a few GeV that hits anything in these events.

- So, the average seen energy for the aa_2f class is only 11 GeV = 4 % of 250 GeV.
- Also the ae/ea_3f events are smaller than "typical" events: One beam-remnant is down the beam-pipe, but also the other, high Q², one is in 25 % of the events.
- The average seen energy is \sim 94 GeV in this case = 37 % of 250 GeV.
- Both aa_2f and ae/ea_3f are mainly leptonic: 94 % and 91 %, respectively.
- All this indicates that simulation ($\propto E_{vis}$), and reconstruction ($\propto E_{vis}$ and multiplicity) should be much faster than for the "typical" events.
- The same goes for disk-space (\propto multiplicity)...

イロト 不得 トイヨト イヨト 二日

- So, the average seen energy for the aa_2f class is only 11 GeV = 4 % of 250 GeV.
- Also the ae/ea_3f events are smaller than "typical" events: One beam-remnant is down the beam-pipe, but also the other, high Q^2 , one is in 25 % of the events.
- The average seen energy is \sim 94 GeV in this case = 37 % of 250 GeV.
- Both aa_2f and ae/ea_3f are mainly leptonic: 94 % and 91 %, respectively.
- All this indicates that simulation ($\propto E_{vis}$), and reconstruction ($\propto E_{vis}$ and multiplicity) should be much faster than for the "typical" events.
- The same goes for disk-space (\propto multiplicity)...

イロト 不得 トイヨト イヨト 二日

- So, the average seen energy for the aa_2f class is only 11 GeV = 4 % of 250 GeV.
- Also the ae/ea_3f events are smaller than "typical" events: One beam-remnant is down the beam-pipe, but also the other, high Q^2 , one is in 25 % of the events.
- The average seen energy is \sim 94 GeV in this case = 37 % of 250 GeV.
- Both aa_2f and ae/ea_3f are mainly leptonic: 94 % and 91 %, respectively.
- All this indicates that simulation ($\propto E_{vis}$), and reconstruction ($\propto E_{vis}$ and multiplicity) should be much faster than for the "typical" events.
- The same goes for disk-space (\propto multiplicity)...

イロト イポト イヨト イヨト

- So, the average seen energy for the aa_2f class is only 11 GeV = 4 % of 250 GeV.
- Also the ae/ea_3f events are smaller than "typical" events: One beam-remnant is down the beam-pipe, but also the other, high Q^2 , one is in 25 % of the events.
- The average seen energy is \sim 94 GeV in this case = 37 % of 250 GeV.
- Both aa_2f and ae/ea_3f are mainly leptonic: 94 % and 91 %, respectively.
- All this indicates that simulation ($\propto E_{vis}$), and reconstruction ($\propto E_{vis}$ and multiplicity) should be much faster than for the "typical" events.
- The same goes for disk-space (∝ multiplicity)...

Simulation and Reconstruction estimates (fresh off the press from Ryo Yonamine)

250 GeV samples

group	nbjobs	total_nb_inpu ts		CPUday	SIM	REC	DST
			totev_submit	sim+rec	(TB)	(TB)	(TB)
aa_2f_leptonic_eW_p W	133,800	446	267,600,000	9,450	40.8	180.9	6.17
aa_2f_leptonic_eW_p B	123,433	529	370,300,000	10,383	40.4	177.2	8.45
aa_2f_leptonic_eB_p W	123,400	617	370,200,000	10,839	44.6	160.9	7.41
aa_2f_hadronic_eW_p W	71,600	358	71,600,000	6,042	38	83.7	2.9
aa_2f_hadronic_eW_p B	60,133	451	90,200,000	6,613	43.9	82.4	3.39
aa_2f_hadronic_eB_p W	60,267	452	90,400,000	6,672	40.6	87.4	3.47
aa_4f	229	40	929000	14	0.03	0.08	0
5f	946	52	620000	87	0.8	1.09	0.03
3f	617008	1504	712440000	71949	460.3	752.78	18.76
	1,190,81		1,974,289,0				
Total	6	4,449	00	122,049	709	1,526	51

-> ~ 40days for 3000 CPUs

Conclusion and Gotchas

- The problem with virtual γ:s is solved, and events are generated, and available on the grid.
- With a production corresponding to ~ 1 ILC year, all can be processed on the grid in 2-3 months (< 1 year)
- Note that there are a lot of channels to consider to completely cover $eetoe^+e^-f\bar{f}$: 38 in total!
- In addition there are lots of small cross-section channels $eetoe^+e^-f\bar{f}f'\bar{f}'$ also to be considered.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusion and Gotchas

- The problem with virtual γ:s is solved, and events are generated, and available on the grid.
- With a production corresponding to ~ 1 ILC year, all can be processed on the grid in 2-3 months (< 1 year)
- Note that there are a lot of channels to consider to completely cover $eetoe^+e^-f\bar{f}$: 38 in total!
- In addition there are lots of small cross-section channels $eetoe^+e^-f\bar{f}f'\bar{f}'$ also to be considered.

< ロ > < 同 > < 回 > < 回 >

Be aware:

- Different channels have different kinematic cuts. Pay attention to the *m*_{ff} cuts in particular!
- Note that there is no ISR emitted before the virtual photon is, so depending on the channel, there might be 0,1, or 2 ISRs present.
- The γ* samples are not very sophisticated. Good enough for background studies, but not for dedicated studies of γγ physics ! Use dedicated generators for that.
- This also goes for e⁺e[−] → e⁺e[−]e⁺e[−] where interference effects will be lost in the factorising approach of the EPA.
- Further consolidation is needed for the $e^+e^- \rightarrow e^+e^-f\bar{f}f'\bar{f}'$, in particular if the kinematic cuts do match those of M.E. 6-fermions with electrons.

イロト イポト イヨト イヨト

Be aware:

- Different channels have different kinematic cuts. Pay attention to the *m*_{ff} cuts in particular!
- Note that there is no ISR emitted before the virtual photon is, so depending on the channel, there might be 0,1, or 2 ISRs present.
- The γ* samples are not very sophisticated. Good enough for background studies, but not for dedicated studies of γγ physics ! Use dedicated generators for that.
- This also goes for e⁺e[−] → e⁺e[−]e⁺e[−] where interference effects will be lost in the factorising approach of the EPA.
- Further consolidation is needed for the $e^+e^- \rightarrow e^+e^-f\bar{f}f'\bar{f}'$, in particular if the kinematic cuts do match those of M.E. 6-fermions with electrons.

イロト イポト イヨト イヨト

Be aware:

- Different channels have different kinematic cuts. Pay attention to the *m*_{ff} cuts in particular!
- Note that there is no ISR emitted before the virtual photon is, so depending on the channel, there might be 0,1, or 2 ISRs present.
- The γ* samples are not very sophisticated. Good enough for background studies, but not for dedicated studies of γγ physics ! Use dedicated generators for that.
- This also goes for e⁺e[−] → e⁺e[−]e⁺e[−] where interference effects will be lost in the factorising approach of the EPA.
- Further consolidation is needed for the $e^+e^- \rightarrow e^+e^-f\bar{f}f'\bar{f}'$, in particular if the kinematic cuts do match those of M.E. 6-fermions with electrons.

イロト 不得 トイヨト イヨト 二日

Be aware:

- Different channels have different kinematic cuts. Pay attention to the *m*_{ff} cuts in particular!
- Note that there is no ISR emitted before the virtual photon is, so depending on the channel, there might be 0,1, or 2 ISRs present.
- The γ* samples are not very sophisticated. Good enough for background studies, but not for dedicated studies of γγ physics ! Use dedicated generators for that.
- This also goes for e⁺e[−] → e⁺e[−]e⁺e[−] where interference effects will be lost in the factorising approach of the EPA.
- Further consolidation is needed for the $e^+e^- \rightarrow e^+e^-f\bar{f}f'\bar{f}'$, in particular if the kinematic cuts do match those of M.E. 6-fermions with electrons.