$\tilde{\tau}$ searches at the ILC

Teresa Núñez - DESY

- Motivation of $\tilde{\tau}$ studies
- Limits at LEP and LHC
- $\tilde{\tau}$ analysis
 - Signal and SM background
 - Worst mixing
 - General cuts
 - Beam induced backgrounds
 - Limits
- Outlook and conclusions

Basically completed analysis

We plan to turn it into an ILD topic paper (we will ask the PSB to get referees)

ILD General Meeting, 7 March 2023

Motivation for $\tilde{\tau}$ searches

Searching SUSY focused on best motivated NLSP candidates and most difficult scenarios

$ilde{ au}$ satisfies both conditions

Scalar superpartner of τ -lepton

- Two weak hypercharge eigenstates ($\tilde{\tau}_{R}, \tilde{\tau}_{L}$) not mass degenerate
- Mixing yields to the physical states ($\tilde{\tau}_1, \tilde{\tau}_2$), the lightest one being with high probability the lightest sfermion (stronger trilinear couplings)
- With assumed R-parity conservation:
 - pair produced (s-channel via Z⁰/ γ exchange, low σ since $\tilde{\tau}$ -mixing suppresses coupling to the Z⁰)
 - decay to LSP and au, implying more difficult signal identification than the other sfermions

SUSY models with a light $\tilde{\tau}$ can accommodate the observed relic density ($\tilde{\tau}$ - neutralino coannihilation)

2

Limits at LEP and LHC

$\tilde{\tau}$ searches at LEP

HELMHOLTZ

GEMEINSCHAF

Valid for any mixing and any values of the not shown parameters

Limits at LEP and LHC (ctd.)

$\tilde{\tau}$ prospects at HL-LHC

ATL-PHYS-PUB-2018-048

No discovery potential for $\tilde{\tau}$ coannihilation scenarios or $\tilde{\tau}_R$ pair production

Expected gain in sensitivity to direct $\tilde{\tau}$ production

- Two models: $\tilde{\tau}_R$ and $\tilde{\tau}_L$
- No mixing
- Two $\tilde{\tau}$ assumed to be massdegenerate
- No mixing

Profits in future e+e- Higgs/EW/Tops factories

Wrt. previous electron-positron colliders:

- increased luminosity and centre-of-mass energy
- improved technologies

Wrt. hadron colliders:

- cleaner environment
- known initial state
- triggerless operation of the detectors

Studies using the full detector simulation and reconstruction procedures of the International Large Detector concept (ILD) at the International Linear Collider (ILC)

- electron-positron collider at $\sqrt{s} = 250-500$ GeV with upgradability (1TeV)
- electrons (80%) and positrons (30%) polarised
- clean and reconstructable final state (near absence of pile-up)
- hermetic detectors (almost 4π coverage)

Signal characterization

Signal events with the (visible) decay products of two τ 's being the only detectable activity

Signal characterization

- large missing energy and momentum
- large fraction of detected activity in central detector (isotropic production of scalar particles)

6

- large angle between the two τ -lepton directions
- unbalanced transverse momentum
- zero forward-backward asymmetry

SM background

SM processes with real or fake missing energy

- $ee \rightarrow \tau\tau$, ZZ $\rightarrow \nu\nu ll$, WW $\rightarrow l\nu l\nu (l = e \text{ or } \mu)$
- $ee \rightarrow \tau\tau + ISR$, $ee \rightarrow \tau\tau ee$, $\gamma\gamma \rightarrow \tau\tau$

missing momentum

Analysis of worst mixing

Search for "worst" mixing angle

53 degrees $\tilde{\tau}$ mixing angle corresponds to the worst case for (unpolarized) LEP conditions

Use ILC conditions weighting contribution of both polarisations

Take into account effect of mixing in cross-section and signal efficiency

- Signal: Whizard 2.8.5 + Tauola
- Background: Whizard 1.95

QUANTUM UNIVERSE

Analysis of worst mixing (ctd.)

Dependence of signal efficiency on $\tilde{\tau}$ mixing

Bino LSP, $m_{\tilde{\tau}} = 200 \text{ GeV}, \Delta \text{ m} = 100 \text{ GeV}$

- Signal efficiency depends on spectrum of detectable τ decays
- Spectrum of τ decay products depends on τ polarisation
- τ polarisation depends on $\tilde{\tau}$ and LSP mixing angles

Higgsino changes chirality but Bino does not

Analysis of worst mixing (ctd.)

Likelihood-ratio statistic used to weight both polarisations

General cuts

Properties $\widetilde{\tau}$ -events "must" have

Maximum jet momentum.

- Missing energy (E_{miss}). E_{miss} > 2 x M_{LSP} GeV
- Visible mass (m_{vis}). m_{vis} < 2 x (M_{$\tilde{\tau}$} M_{LSP}) GeV
- Momentum of all jets (p_{jet}). p_{jet} < 70% Beam Momentum (or M_τ/M_{LSP} dependent)
- Two well identified τ 's and little other activity

Above 95 % signal efficiency for each of these cuts (excluding for the τ -identification)

$$P_{max} = \frac{\sqrt{s}}{4} (1 - (\text{MLSP} / M_{\tilde{\tau}})^2) (1 + \sqrt{1 - \frac{4M\tilde{\tau}^2}{s}})$$

GEMEINSCHAFT Triggerless operation

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

General cuts (ctd.)

Properties $\tilde{\tau}$ -events "might" have, but background "rarely" has

- Missing transverse momentum
- Large acoplanarity
- Large transverse momentum wrt. thrust-axis
- High angles to beam ٠

Cuts against properties of irreducible sources of background

- Charge asymmetry ($\Sigma charge * \cos(polar_angle)$) ٠
- Difference between visible mass and Z mass •

Properties that the background often "does not" have

- Low energy in small angles •
- Low energy of isolated neutral clusters • **GEMEINSCHAFT**

QUANTUM UNIVERSE

Beam induced backgrounds in e⁺e⁻ colliders

e⁺e⁻ beams are accompanied by real (beamstrahlung) and virtual (Weizsäcker-Williams process) photons

Interactions between real and/or virtual photons produce:

• e⁺e⁻ pairs

- produced by scattering of two real photons
- 10⁵ pairs per bunch crossing

- very low p_T (< 1GeV), curl up in magnetic field, interesting for BeamCal studies
- low p_T hadrons
 - produced by vector meson fluctuations of real or virtual photons
 - <1.05> events per bunch crossing at \sqrt{s} = 500 GeV
 - low p_T , travelling through the detector

 $\gamma\gamma$ interactions are independent of the e⁺e⁻ process, but can happen simultaneously to it (overlay-on-physics events) or not (overlay-only events)

13

Effect of overlay-on-physics events

Fast simulation (SGV) - not overlay tracks

Full simulation

Not cut on overlay tracks

Cut on tracks based on transverse momentum, angular distribution and input parameter significance

12 12 10 10 $\Delta m = 10 \ GeV$ $\Delta m = 3 \ GeV$ Nb of sigmas Nb of sigmas 8 8 m $\tilde{\tau} = 240 \, GeV$ 6 6 4 m $\tilde{\tau} = 240 \ GeV$ 2 2 **Bino LSP Higgsino LSP Higgsino LSP** Bino LSP 0 0 20 40 60 80 20 40 80 0 60 n Mixing angle $\tilde{\tau}_{R}$ Mixing angle $\tilde{\tau}_{L}$ Ĩ. HELMI DESY. Larger effect of overlay tracks in low DM case since they are GEME more similar to the signal ones: strong reduction of significance

Motivation for only-overlay events analysis

Overlay-only events are ~10³ times higher than any SM background included in the analysis

- Overlay-only events: ~10³ per train (<1.05> low p_T hadrons + ~1 seeable e⁺e⁻ pair)/BX
- SM background: ~ 1 per train
- Signal: ~ 10⁻⁶ per train

A suppression stronger than 10⁻⁹ is needed to make the background from overlay-only events negligible

 $\gamma\gamma \rightarrow low \ pT \ hadrons \ similar$ to visible products from $\tilde{\tau}$ production for small (≤ 10 GeV) LSP- $\tilde{\tau}$ mass differences

Overlay-only events can be misidentified as signal events

Only-overlay analysis strategy

Analysis strategy:

- identify a set of independent cuts (not enough Monte Carlo statistics to get the suppression by sequential cuts)
- compute total rejection factor as the product of the factors obtained with either of these cuts
- study of two different mass differences between $\tilde{\tau}$ and LSP masses (2 and 10 GeV)

Sample overlay-only events:

- extracted from the standard "IDR" production

- $\gamma\gamma$ interactions generated by Pythia 6.442 (M $\gamma\gamma$ > 2 GeV) or a dedicated generator (arxiv: hep-ph/9305247) (M $\gamma\gamma \leq 2$ GeV)

Effect of cuts on overlay-only events

Rejection "standard" cuts alone:

M $ ilde{ au}$ - M _{LSP} (DM)	2 GeV	10 GeV
	2.6x10 ⁻³	< 2.7x10 ⁻⁶ (95% CL)

(All surviving events with $\gamma\gamma \rightarrow low \ pT \ hadrons$ interactions)

Main differences between 2GeV and 10 GeV cuts:

- Multiplicity and τ -identification cuts are similar
- Missing energy cuts more for DM = 2 GeV
- Missing transverse momentum cuts drastically for DM = 10 GeV
- $\cos(\theta_{P_{tot}})$ important cut for DM = 2GeV

Effect of cuts on overlay-only events (ctd.)

Effect of cuts on overlay-only events (ctd.)

Independent and additional cuts

Independent set of cuts from the "standard" ones:

- missed $\mathbf{p}_{\mathrm{T}}\text{+}~\rho^{1}$
- remaining cuts²

(several cuts among the "standard" ones depend on the exact model-point)

Additional independent requirements based on:

- Initial State Radiation photons (ISR)
- vertex
 - (1) Tranverse momentum (in the plane) with respect to the thurst axis
 - (2) Multiplicity, energy, angular distributions, au identification

ISR requirement

Events with isolated photons with sizeable energy and angle to the beam above the lower edge of the tracking system

- Energy > 1.1 GeV
- Angle optimized for getting enough rejection without killing all events

Vertex requirement

Events with at least two "non-vertex" tracks

Main vertex fitted with beam-spot as a constraint, effectively meaning that it will have at least two tracks Tracks that are not included in any vertex (too high x^2) are "non-vertex" tracks

Rejection on overlay-only events

DM = 10 GeV	red. missed P _T + $ ho$	1.3x10 ⁻³	
	red.	alone	combined w/ missed P _T + ρ
remaining cuts		6.0x10 ⁻³	7.8x10⁵°
remaining cuts + ISR (7< θ)		1.4x10 ⁻⁴	1.8x10 ⁻⁷
remaining cuts + ISR (35 < θ <145)		1.7x10 ⁻⁵	2.2×10 ⁻⁹
DM = 2 GeV	red. vertex	1.9x10 ⁻²	
	red.	alone	combined w/ vertex
standard cuts		2.6x10 ⁻³	5.0x10 ⁻⁵
standard cuts + ISR (7< θ)		1.8x10 ⁻⁷	3.5×10 ⁻⁹
Standard cuts + ISR (30< θ <150)		9.5×10 ⁻⁹	1.8x10 ⁻¹⁰

Signal efficiency: ~10% with no requirement on detecting an ISR. It goes to ~5% if a detected ISR is required (for any θ)

23

Adding overlay-only events to SM background

Significance with/wo overlay-only events DM = 2 GeV #overlay-only events ~70 per polarisation
(complete running time, both polarisations)

Adding overlay-only events to SM background

Significance with/wo overlay-only events DM = 10 GeV

#overlay-only events ~700 per polarisation (complete running time, both polarisations)

Adding overlay-only events to SM background

Significance with/wo overlay-only events DM = 10 GeV #overlay-only events ~700 per polarisation (complete running time, both polarisations)

C

At ILC discovery and exclusion are almost the same

arXiv:2105.08616

Outlook/Conclusions

- Even after HL-LHC large parts of the $\tilde{\tau}$ -LSP mass plane will remain unexplored
- Future electron-positron colliders are ideally suited for $\tilde{\tau}$ searches
- Worst scenario for $\tilde{\tau}$ production at the ILC was reviewed taking into account ILC beam polarisation conditions

ILC will discover/exclude $\tilde{\tau}$'s for any $\tilde{\tau}$ -LSP mass difference and any $\tilde{\tau}$ -mixing nearly up to the kinematic limits

Draft for turning the study into an ILD topic paper is on preparation

OUANTUM UNIVERSE