Top/Heavy Flavor Meeting

SSbar 250 GeV Analysis

Yuichi Okugawa Mar. 3rd, 2023

Objectives

• Efficiency Correction

- Calculate the correction factor for Kaon reconstruction efficiency due to the detector acceptance.
- Retrieve the loss in efficiency at the backward region.

• Leading Pion Identification

- Use pion as a signature of the event.
- uu/dd identification can be realized.
- Same method as Kaon ID.

Efficiency Correction

Efficiency Correction

- Detector acceptance
 - Ability to extend the particle reconstruction at the far edge of the detector?
 - One requires reconstruction efficiency correction.

$$\text{Efficiency} = \frac{N_{reco}}{N_{gen}}$$

Throughout the entire polar angle.

Polar Angle (w/o Efficiency corr.)

Cosθ Gen & Reco (uu)

Int. Lumi. 4.2 ab⁻¹

0.6

0.8 K⁺K⁻ cosθ

Int. Lumi. 4.2 ab⁻¹

0.2

0.4

0.6 0.8

K⁺K⁻ cosθ

Leading Pion Analysis

Event Structure

<u>s-tag</u>

Charged Kaon track will give the original quark information. Kaon ID becomes the key.

<u>u/d-tag</u>

Charged Pion track will dominate throughout the entire polar angle. Pion ID becomes the key.

• Can distinguish well from Kaon (not bothered by proton or other competitors.)

Figure: dE/dx vs p for ssbar sample

dE/dx distance vs cos θ (Kaon)

SS

dE/dx distances (Kaon)

14

dE/dx distance vs cos θ (Pion)

uu

dE/dx distances (Pion)

16

22

Summary & Prospects

Summary

• Efficiency Correction

- Apply correction based on the reconstruction efficiency
- Correction for acceptance

• Leading Pion Identification

- Effective way to identify u/d process
- Works very well throughout the entire polar angle.
- u/d mix sample tested

Prospects

- Finally mix **uds** sample?
 - a. Implement both Kaon and Pion ID
- Fit and subtract distirbutions (discussion)
 - a. Extract histogram from the uds mixture using Pi LPF0
 - b. Extract histogram from the uds mixture using K LPFO
 - c. Fit both histograms
 - d. Subtract PiLPFO fit function from KLPFO histogram
 - e. Compare the result with b)?