

AFB studies at 500 GeV LCFI+ Flavour Tag Optimization

ILD Top/HF group meeting 3/03/23 Jesús P. Márquez Hernández

AITANA CSIC NSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

February updates

- 1 Introducing dEdx to LCFI+.
 - Implementation finished and review.
 - Already prepared to be pulled in Git :)
- 2 Re-training of flavour tag weights using dEdx.
 - With a PSO for each case:
 - 250 GeV + dEdx
 - 500 GeV + dEdx
 - 250 GeV + dEdx (+25% improvement)

500 GeV + dEdx (+25% improvement)

Prospects

If we don't redo the PSO with every new set of data we may run into under-fitting

Prospects for improving dEdx

The gaussians represented by each type of particle would be thinner, allowing better classification when we use them for our observables

Jesús P. Márquez Hernández - ILD SW&ANA 18/01/23

First test with dEdx

Performance plots

- On the next slides:
 - Plots for b-tag and c-tag:
 - ROC, considering the desired flavour as signal and the others as background.
 - Purity vs Efficiency.

PSO+dEdx Performance (250 GeV)

A

PSO+dEdx Performance (250 GeV)

A

PSO+dEdx Performance (500 GeV)

A

PSO+dEdx Performance (500 GeV)

A

dEdx Performance - Insights

- There's some problem in the training process:
 - Maybe some overfitting in catA is causing miss-tagging of c-quarks.
 - After checking it... it seems that most categories are somehow problematic.
 - We might need a stronger statistical tests' thresholds (AD+KS).
- Next move: Repeat the PSO with a higher KS threshold (p>0.1).
- Also: Merge the 500 GeV $e_L p_R + e_R p_L$ samples for training.

dEdx Performance - Insights (thresholds)

• For 250 GeV:

	CATEGORY	FOM	AD	KS
500	A	0,801	0,300	0,129
PSO	В	0,939	0,169	0,064
	С	0,899	0,271	0,075
	D	0,956	0,974	0,258
PSO + dEdx	A	0,817	0,390	0,058
	В	0,948	0,840	0,170
	С	0,915	0,391	0,160
	D	0,954	0,264	0,080

• For 500 GeV:

	CATEGORY	FOM	AD	KS
	A	0,805	0,518	0,123
PSO	В	0,933	0,101	0,050
	С	0,905	0,276	0,123
	D	0,954	0,509	0,118
	A	0,815	0,412	0,056
PSO + dEdx	В	0,948	0,717	0,130
	С	0,914	0,345	0,141
	D	0,954	0,253	0,077

First test with dEdx

Next training

- For the next training processes:
 - Same structure, just increasing KS threshold to 0.1.

• Luminosities:

	CATEGORY	FOM	AD	KS	PSO	RETRAINING	NTuples+Plots
PSO	А	0,8013	0,3000	0,1290	done	done	done
	В	0,9390	0,1692	0,0640	done	done	done
	С	0,8989	0,2711	0,0750	done	done	done
	D	0,9560	0,9743	0,2580	done	done	done
PSO + dEdx	A	0,8240	0,2829	0,1030	done	ongoing	tbd
	В	0,9464	0,3453	0,2110	done	ongoing	tbd
	С	0,9163	0,6668	0,1530	done	ongoing	tbd
	D	0,9604	0,7050	0,4500	done	ongoing	tbd
PSO + dEdx (25% improved)	A				ongoing	tbd	tbd
	В				ongoing	tbd	tbd
	С	0,9190	0,6543	0,1240	ongoing	tbd	tbd
	D	0,9609	0,7213	0,2120	ongoing	tbd	tbd

	CATEGORY	FOM	AD	KS	PSO	RETRAINING	NTuples+Plots
PSO	A	0,8053	0,5176	0,1230	done	done	done
	В	0,9328	0,1009	0,0500	done	done	done
	С	0,9049	0,2756	0,1230	done	done	done
	D	0,9540	0,5088	0,1180	done	done	done
PSO + dEdx	A	0,8149	0,4122	0,0600	ongoing	tbd	tbd
	В	0,9479	0,7165	0,1300	ongoing	tbd	tbd
	С	0,9143	0,3451	0,1400	ongoing	tbd	tbd
	D	0,9543	0,2527	0,0800	ongoing	tbd	tbd
PSO + dEdx (25% improved)	A				tbd	tbd	tbd
	В				tbd	tbd	tbd
	С				tbd	tbd	tbd
	D				tbd	tbd	tbd

Summary & Prospects

- First, introducing dEdx to flavour tagging was sucesful, now we have to use it well.
- Overfitting problem appeared with the new dEdx variables:
 - KS test's threshold made stronger to avoid this.
- The PSO for different sets of data [old, dEdx, dEdx(+0.25)] is running!

- After completing the production of Flavour Tagging weights we will compare:
 - For **2f250**, PSO+dEdx, PSO+dEdx(+0.25).
 - For **PSO**, PSO+dEdx, PSO+dEdx(+0.25)
- Then, prepare the NTuples for:
 - physical studies (R_q & A_{FB})!

Thanks for your attention

Back-up

Events for each category

Z-Pole (LCFI+ paper₁)

Events

b jets

22.9

39.7

13.5

23.8

(%)

c jets

59.5

39.8

0.54

0.19

1. LCFIPlus: A Framework for Jet Analysis in Linear Collider Studies

Category	А	В	С	D
Number of vertices	0	1	1	2
Number of single-track pseudovertices	0-2	0	1	0

Cat.

А

В

C

D

PSO – Adaptation to FT

- We need:
 - A 3-class classifier (b quarks, c quarks, uds quarks).
 - We also want to avoid overfitting:
 - Kolmogorov-Smirnov test
 - Anderson-Darling test
 - We need a FOM adapted to 3 different classes.
 - A final check is **always needed**:

Control biased test scores. (more info in back-up)

Each of them have flaws, so using both is a safer way to go!

PSO – Kolmogorov-Smirnov Test

- Compare how likely there is that two different empirical distributions (histograms) came from the same underlying distribution function.
 - It uses the max. distance between the cumulative probability(CPD) of both histograms:

$$D_{n,m} = \sup_x |F_{1,n}(x) - F_{2,m}(x)|$$

• Then, we past a test for such distance to a certain degree of significance level α (usually 0.05):

$$D_{n,m} > \sqrt{-\ln\left(rac{lpha}{2}
ight) \cdot rac{1+rac{m}{n}}{2m}}.$$

The output is a p-value which determine how likely it is that both histograms came from the same distribution according to our significance level. In particular 1-p is the probability of the null hypothesis (in this case, being different histograms). A 2-sigmas effect is about p < 0.05.</p>

Notice how a big jump in the CPD even in a very narrow region will lead to a very high distance (low KS score): Hyper-sensibility if the distributions are not smooth enough

Jesús P. Márquez Hernández - Flavour Tag Studies

PSO – Anderson-Darling Test

• The AD test statistic is defined as:

$$A^2 = -n - S$$

• Where:

$$S = \sum_{i=1}^n rac{2i-1}{n} \left[\ln(F(Y_i)) + \ln(1-F(Y_{n+1-i}))
ight]$$

- Being F the cumulative probability distribution for a certain distribution (or the other sample in our 2-samples scenario).
 - Works better with uniform distributions and higher binning.
- Again, the output is an estimator based on a cut in A>A_{critical}

Notice how this kind of testing avoid the hyper-sensibility that we had in narrow jumps in the CPD but what if one of these jumps in CPD is actually relevant?

I chose very conservative (and secure) way to proceed: Applying both tests!

Jesús P. Márquez Hernández - Flavour Tag Studies

PSO – KS & AD Tests in ROOT's histos

- Both test are implemented in ROOT's TH1 Class.
 - We compare test & train TH1 histograms for our study.
 - Very sensitive to binning thickness and doesn't work that good if the underlying distributions are not "smooth" or if the statistics are too small.
 - KS seems to be overly sensitive in older versions of ROOT (v < 6.2 aprox), which we used in ILCSOFT for all this optimization.
- We run it with the "X" function:
 - Run the pseudo experiments post-processor with the following procedure: make pseudo-experiments based on random values from the parent distribution, compare the KS distance of the pseudo-experiment to the parent distribution, and count all the KS values above the value obtained from the original data to Monte Carlo distribution. The number of pseudo-experiments nEXPT is currently fixed at 1000. The function returns the probability estimated as the ratio of pseudo-experiments that pass the test.

We will fix the KS & AD thresholds *ad hoc,* prior inspection, for each category! (example in next slide)

