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Now — acceleration
« With high gradient!
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We are now going to look at what happens when you operate an rf structure at high-
gradient and high-power.

To remind you of the CLIC parameters: the accelerating gradient is 100 MV/m, an input
power of around 64 MW and a pulse length of around 180 ns giving a pulse energy of 12 J.

PETS feed two accelerating structures so need to produce 130 MW.
High-power behavior is not described by a nice, clear theory, with proofs and theorems.

Instead what we have is picture emerging from the fog. | will describe the current
understanding of how rf structures behave at high-power:

* How achievable gradient and power level depend on rf geometry.

* The physics of high-power phenomenon.

* Technology and why we think it works.

To do this | will cover:

1. Experiments and results.
2. Scaling laws

3. Physics of breakdown



A few more words of background.
A number of effects which emerge at high-power and high-gradient.
These include:

1. Breakdown — This is essentially the same phenomenon you all know from daily life,
sparking and arcing. This is the main effect limiting gradient in CLIC.

2. Pulsed surface heating — Surface currents cause pulsed temperature rises,
consequently cyclical stress which breaks up the surface and induces breakdown.

3. Electromigration — This is a new area of investigation in which rf currents directly
affect the crystal structure of the copper surface.

4. Dark currents — Field emission currents are captured by the rf and can be
accelerated over longer distances.

5. Dynamic vacuum — Field emission currents desorbs gasses which cause pressure
rises during the rf pulse.

6. Multipactor — not really a problem at the highest gradients.



* What does a high-power rf test look like?
* What happens when an rf structure breaks down?
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* Transmitted pulse
follows the incident
pulse but with ~4dB of
attenuation.

e Reflected signal is
~20dB lower than
incident pulse.

* Only afew mV seen on
the faraday cups. DC2-
Upstream sees 1/10 of
the signal compared to
downstream.
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* Transmitted pulse drops as the
arc is established.

* Reflected power increases to
the same order as the incident
pulse.

* Faraday cup voltages are
saturated: 100-1000x increase
in charge emitted.

 We can use the difference in
time between the transmitted
power falling and the reflected
power increasing to find the
BD cell location.

 The phase of the reflected
signal is used to pinpoint cell
location.
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oy Cavity Conditioning Algorithm

 Automatically controls
incident power to
structure.

* Short term: +10kW steps
every 6 min and -10kW
per BD event.

* Long Term: Measures
BDR (1MPulse moving
avg.) and will stop power
increase if BDR too high.
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Xbox2 in building 150

* New X-band test bench in building 150 next to cafeteria

* Modulator arrived in May. Acceptance tests ok.

* Not as fast as we would have liked due to cohabitation with LS1 works.
Five months break for water distribution consolidation :

* Waiting now for the Klystron being tested in SLAC
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cle Status of Xbox2

 Modulator arrived, installed and tested succesfuly to the
require voltag, pluse length and stability

* Klystron being currently tested in SLAC
— Some problems with testing network solved.
— Testing now at 25MW at 1.5 us
— Expected delivery in November

N. Catalan Lasheras



Preparation now underway at CERN for Xbox-3

Based on combining four 6 MW Toshiba klystrons



Nextef expansion is being proceeded
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BD detection

LCWS201 |
Alexey Dubrovskiy

27.09.11
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» Breakdowns in the recirculation loop are detected only from the reflected
power (Pref/ Pfwd > ~15%).

» Breakdowns in attenuator and the waveguide are detected from the
missing energy (Utran / (Ufwd * transmission factor) > 15%)

» Breakdowns in the ACS are detected from the reflected power, the
missing energy, the Faraday cup and the photomultiplier.
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* Transmitted pulse
follows the incident
pulse but with ~4dB of
attenuation.

e Reflected signal is
~20dB lower than
incident pulse.

* Only afew mV seen on
the faraday cups. DC2-
Upstream sees 1/10 of
the signal compared to
downstream.
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* Transmitted pulse drops as the
arc is established.

* Reflected power increases to
the same order as the incident
pulse.

* Faraday cup voltages are
saturated: 100-1000x increase
in charge emitted.

 We can use the difference in
time between the transmitted
power falling and the reflected
power increasing to find the
BD cell location.

 The phase of the reflected
signal is used to pinpoint cell
location.
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51+52 Normal pulse #36
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51+52 typical BD pulses
#72 Reflected RF back from klystron again
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Breakdown Waveforms of TD18
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High Power Operation History G119

— BDR (1/hr)
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ﬂb © Comparison of the TD24R05(KEK); TD24R05(CERN) and TD26R05CC (CERN)
KEK-JAPAN

processing histories.
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Relevant data points of BDR vs Eacc

101017
BDR vs Eace
selected points which were intentionally talken
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Steep rise as Eacc, 10 times per 10 MV/m, less steep than T18
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TD18 #2 BDR versus width
at 100MV/m around 2800hr and at 90MV/m around 3500hr
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Similar dependence at 90 and 100 if take usual single pulse?
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o Summary on gradient scaling

For a fixed pulse length For a fixed BDR
BDR ~ E° E, -t;° = const
E-t
= const
BDR

In a Cu structure, ultimate gradient E, can be scaled to certain
BDR and pulse length using above power law. It has been used in
the following analysis of the data.

The aim of this analysis is to find a field quantity X which is
geometry independent and can be scaled among all Cu structures.

Alexej Grudiev, New RF Constraint. Dec. 2008



T244#3

T24#3 BDS vs time at 252ns 100MVm
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We understand the BDR has been kept decreasing.
2011/3/11 T24#3 Summary (7) From T. H|go
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Breakdown sequence statistics

Both sets of measurements were made on TD18s

101028
0'7[3 : L : L - Number of breakdown events after INTLK
i\ —=— All events | 50 | |
E= ~ Multi-event taken as one event [ B #BD after ||
0.5 40 |

Maximum = 8 limited |
by pulse recording system

30 |

# of events

20 |

Fraction of breakdown events

10 |

o r N r :;:;;;Q#L:;:;;: el ot
0 0
1 2 3 4 5 6 7 :
Cascaded events

SLAC

This kind of data is essential for determining rf hardware — on/off/ramp? — and
establishing credible operational scenarios.

CLIC meeting Walter Wuensch 6 May 2011



Breakdown Distribution for
T24 SLAC Diskl of Last 50 Hours
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18 series breakdown rate distributions
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{cell kek> histogram
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&/!3 Results: TD26CC BD Location ")\

7z
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r 0.25

- 1015
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Corrupted files and no powered periods have been removed from the record

7 EUCARD

Wilfrid Farabolini




m LANCASTER
= Results: TD24R05 BD Location”"")\

7z
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Hot cells (5 and 6) have appeared from record #50
The very high peak values are an artifact of the normalization (if only 2 BDs
during a record these cells will result very active)

7 EUCARD

———

Wilfrid Farabolini



log(BDR) 1/pulse/m

1e-05

—
P

O
o)

W
P

O
N

1e-07

CLIC structure performance summary

TD24r05 |
©O-TD26CC

80 90 100 110

Unloaded Accelerating Gradient MV/m



Quantifying geometrical dependence of high-power
performance



Importance of geometric dependence - motivation

As you have seen in other presentations, there is a strong interplay between the
rf design of accelerating structures and the overall performance of the collider.

One of the strongest dependencies is emittance growth as function of the
average iris aperture which acts through transverse wakefields.

The iris aperture also influences required peak power and efficiency through its
effect on group velocity.

But crucially, the iris aperture has an extremely strong influence on achievable
accelerating gradient.

Very generally, we expect that the gradient of an rf structure should be calculable
from its geometry if material and preparation are specified.



The big questions

Where does such a geometrical dependency come from?

Can we quantify the dependence of achievable accelerating gradient
on the geometry?

Trying to understand, derive and quantify geometrical dependence
has been a significant effort because an essential element of the
overall design and optimization of the collider.



The basic approach

The basic element is to express our high-power limits as a
function of the unperturbed fields inside our structures — like
the electric field limit in dc spark.

So first we are going to make sure that we have a feel for how
those fields vary as a function of geometry.

We use a specific example of iris variation for a fixed phase
advance in a travelling wave structure.



Field distribution

Electric field (V/m) Magnetic field (A/m) Poynting vector (W/m?)

E Field[¥_per_m W Field[A_per_m Poynting[W_per_
2.05066+08 2. SH89e+0S 3. 75380409
1.9224e+08 2. 3690e+0S 3.5192¢+409
1.7943e+08 2.22986405 3. 2846409
1. 6661e+08 2.07058+05 385006409
1.5380e+08 1. 91130405 2.81540409
1.4098e+08 1,75206+85 2.5000¢+09
1.2816e+08 1, 5928e+05 2,3462¢+09
1.1535e+88 1. 43350408 2.1116¢+09
1.0253e+08 1. 27436405 1070000
8.9718e+07 1. 1150e+08 1. 6424429
7.6902e+07 9, 5578404 1.4978¢+09
5. 4087¢+07 7. 985Me 404 137300105 Bapilis
5.1271e+07 6. 9729e+04 9. 3858408 ey
7.9398¢+28 A
3. 8456407 \, 76804 €404 i o <18
2.5640e+07 3, 1879+04 2. 94780408 Qo7
1.2824e+07 1. 5954804 & 77M2e08 N
§.7531e+83 2.9110e+01 2 R

e Simulation in HFSS12

* Field values are normalized to accelerating gradient, £, .=100MV/m
* Frequency: 11.424GHz

* Phase advance per cell: 120 degree

e Iris radius: 3mm

* Y, /c=1.35%

Jiaru.Shi at CERN dot CH



Parameters v.s. ir
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Jiaru.Shi at CERN dot CH

Simulation in HFSS12

Iris thickness: 1.66mm
Frequency: 11.424GHz
Phase _adv/cell: 120 degree

RIQ = V2, . /(wV)



Overview of how different types of structures actually
behave — results of high-power tests of accelerating
structures to PETS



Achieving high gradients has been a high profile concern for CLIC
and NLC/JLC since roughly 2000. Here are the target specifications
we have had:

frequency [GHz] | Average loaded | Input (output Full pulse

gradient for PETS) power | length [ns]
[MV/m] [MW]

NLC/JLC 11.424 50 55 400

CLIC pre-2007

Accelerating 29.928 150 150 70

PETS 29.985 -5.7 642 70

CLIC post 2007
Accelerating 11.994 100 64 240
PETS 11.994 -6.3 136 240



Trying to achieve these specifications has resulted over the years in
the test of many structures of diverse rf design.

The preparation and testing conditions of the test structures which
were built were not always the same — these processes also
evolved over the period the structures were being developed.

But the wide variety of structure geometries were tested under
reasonably similar conditions.

So we have used this unique set of data to try to understand and
then quantify the geometrical dependency of gradient.



Es @ tp=200 ns, BDR=1e-6 bpp/m

Dual Mode Cavity
SW1A2p75T2p0
SW1A3p75T1p66
SW1A3p75T2p6
SW1A5p65T4p6

TD24 SLAC Rev
T24 KEK_Out
T24 _KEK_In
TD18 KEK_Out
TD18 KEK_In
T26VG3-Out
T26VG3-In
T18VG2.6-Rev
T18VG2.6-Out
T18VG2.6-In
CLIC-X-band
HDX11-Cu
H60VG4R17
H75VG4R18
H60VG3R17
H60VG3R18
H60VG3
HA0VG3
T53VG3MC
T53VG5R
DDS1

“

1

I

]

]
mJs
BAG

——

0 100 200 300

Es [MV/m]

400

Maximum surface electric and magnetic fields

Hs @ tp=200 ns, BDR=1e-6 bpp/m
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Es = 250 MV/m or higher has been achieved in several cases: very low or zero group velocity




What do can make out of this mess?

My personal conclusion from looking at data like this, was that a something else
is important, beyond E and B surface fields.

This something felt like it had to be related to the power flowing through the
structure. In particular some kind of power density, since larger apertures
generally support larger powers.

This is reasonable when you think about what we know about breakdown.

Field emission is pico or nano amps. Breakdowns in rf and dc produce 10’s, 100’s
even kA of current.

A lot of power is needed to accelerate so much current. The breakdown must
need to be “fed” with the necessary power so power density is crucial.



This has resulted in the development of two power-density based
design criteria:

% — const S, = Re(S)+% Im(S) E/E

global power flow local complex power flow

New local field quantity describing the high H./E,
gradient limit of accelerating structures.

A. Grudiey, S. Calatroni, W. Wuensch (CERN).

2009. 9 pp.

Published in Phys.Rev.ST Accel.Beams 12

(2009) 102001 SC/E 2

There is no proof (yet) but rather the general set of physical arguments plus reasonably good
consistency with measurements.



Power flow related quantities: Sc and P/C

sqrt(Sc) @ tp=200 ns, BDR=1e-6 bpp/m
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sqrt(P/C) @ tp=200 ns, BDR=1e-6 bpp/m
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Another aspect of geometrical dependence — bandwidth.

Lower group velocity structures support larger surface fields. Lower
group velocity is lower bandwidth — think of the dispersion curves —
which could make it harder to feed the breakdown transient, when
currents shoot from nano to kA.

12.5 N
+
+
X
11.875 yxx X X T
'~ +
5 +
= +
& 1129
GC) +
>
+
g '
+
+
10624+
10
0 30 60 90 120 150 180

phase advance per cell [degrees]



Summary of turn on times

Gest Frequency |Measuement |Resut

Simulation dc spark 5-10 ns
New DC System DC Voltage Fall Time 12-13ns
Swiss FEL (C-Band) 5.7GHz Transmitted Power Fall Time 110 - 140ns
KEK T24 (X-Band) 12GHz Transmitted Power Fall Time 20-40ns
CTF/TBTSTD24 (X- 12GHz Transmitted Power Fall Time 20-40ns
Band)

CTF SICA (S-Band) 3GHz Transmitted Power 60-140ns

The turn on time could be related to the bandwidth of the
structures or possibly the intrinsic size.
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Summary on the high-power RF constraints

RF breakdown and pulsed surface heating constraints used for CLIC_G design (2007):
e EM< 250 MV/m

¢ P /Cipr(t)/3 =18 MW-ns'/3/mm

o ATMa(H M t ) < 56 K

Optimistic RF breakdown and pulsed surface heating constraints for BDR=10"° bpp/m:
e ESma.(t P)/6 <250 MV/m - (200ns)/6

Pin/Cin(t)1/3 < 2.8 MW/mm - (200ns)*3 = 17 [Wu]
e SMma.(t P)1/3 <5 MW/mm?2- (200ns)Y/3

and

o ATmax(H max, t ) < 50 K

* Depending on degree of our optimism a safety margin has to be applied.
* Varying RF constraints in the optimization how much money one can save by being

optimistic.
A. Grudiev




— e Optimization procedure

=T T rCLIC

e

<Ep, f, Ay, <a>, da, d, d, [€
’ ¥
Bunch population Cell parameters
I |
N Q.R/Q, v, E/E, H/E,| |Q. A f,
\2 v
Structure ) Bunch o
L., N, parameters separation

2
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YES Cost func‘rion
minimization

constraints
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>

1

Alexej Grudiev, Structure optimization. CLIC-ACE, 16 Jan. 2008



@ Simplified Parameter Diagram @

Variable Meaning Current
value

ldrive Drive beam current 101A
Eqgrive Drive beam energy 2.37GeV
| e Main linac RF pulse length  244ns
drive N Neector Number of drive beam 4
Edrlve structure n, sectors per linac
TRF ncycle N ombine Combination number 24
sector H EO f, Repetition rate 50Hz
comblne f N Main beam bunch charge  3.72e9
r o
f Two-Beam Acceleration Complex in linac
MB bunch | 312
I'module' Astructure' M unenes per puise
Neycle Spacing between MB 6 cycles
bunches
Ep MB energy at linac 9GeV
entrance
Ecms Centre-of-mass energy 500GeV
G Main linac gradient 100MV/m
Drive Beam Generation Complex Main Beam Generation Complex

I:)klystron' Nklystron' I‘DBA' IDklystron'

D. Schulte CLIC re-baselining, February 2013 61



Breakdown!

20 pm @\ EHT = 3.00 kv DC-Spark sample Cu{47) ol
|_| o ) WD = 5.1 mm Spot 7 (4.65) Markus Aicheler

Signal A = SE2 Date :29 Jul 2010

From pA to kA and from Angstroms to 100s of um to mmes.
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Vacuum

An overview of the breakdown process

Copper
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Vacuum

Copper

Actually real surfaces are imperfect
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Vacuum

Copper

And the material below the surface isn’t perfect either

(o)

voids and inclusions

slip planes

dislocations
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Add an external electric field, around 200 MV/m. Surface charges re-arrange themselves
in fs.

Vacuum

(o)

Copper  \nids and inclusions

slip planes

dislocations
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Field emission current flows from metal into vacuum (Fowler-Nordheim) from local
areas (O[10 nm]) of geometrical field enhancement and low local work function. There is
a local field enhancement B of around 50-100. The total current from something like 0.1

mm? is a nanoAmp.

e/ )

Copper

voids and inclusions

slip planes

dislocations

Note: Identifying the weak points is a crucial, unresolved research issue. °



The external electric field causes a tensile stress and field emission current while still in
the metal causes thermal induces stresses so the material imperfections and surface
features evolve.

e/ )

Copper

voids and inclusions

slip planes

dislocations
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The external electric field causes a tensile stress and field emission current while still in
the metal causes thermal induces stresses so the material imperfections and surface
features evolve.

'y VO Wy

Copper  \oids and inclusions

slip planes

dislocations
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All the while, neutral copper atoms are coming off the surface field assisted evaporation.

A &

Copper  \oids and inclusions

slip planes

dislocations
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The copper atoms are ionized by the field emission current. the positively charged ions
head to the surface and the electrons add to the emission current.

R ' 2}

(@)
voids and inclusions

Vacuum

Copper

slip planes

dislocations
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The copper ions hit the surface and sputter more copper in addition to that produced at
by the original emission process.

o

(@)
voids and inclusions

Vacuum

Copper

slip planes

dislocations
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One of these emission points, on some rf or dc pulse, at some point passes a threshold
and the process runs away. We will now switch to a computer simulation of the run-
away process.

Vacuum

O

Copper  \oids and inclusions

slip planes

dislocations
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ArcPIC animation of breakdown turn-on by Kyrre Sjobaek

Densities, time = 0.000 [ns]
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The surface potential used for solving the Fowler-
Nordheim equation

V(z)= { for z<0
-eEz e?/4z for z>0

12-97
5387A3

W. Wuensch Fifth International Linear Collider School 30 October 2010



The Fowler-Nordheim equation
(approximate, practical form)

—6.53x10°x¢p%'? | BE

1.54X106ﬂ2E2 610'41(0_1/2 o
®

_ §E26—6.53><103¢3/2/,BE

€

I=A

Units: [/]=A, [E]=MV/m, [A_]=m?, [p]=eV and [B]=dimensionless

Values: ¢ = 4.5 eV for copper

W. Wuensch Fifth International Linear Collider School 30 October 2010



The Fowler-Nordheim equation
Analyzing real data

E° E
6.53x10%p*'?
IB — 7 gp > i
E
1.54.10° 3°
¢ =A p exp(10.41- (0_1/2) You will have the opportunity to analyze
®» a real set of data tonight for homework!

W. Wuensch Fifth International Linear Collider School 30 October 2010



Effective Fowler-Nordheim Field Emission

Self-consistent effective FN field emission in
RF and space charge fields using Pic3P

RF surface field map computed with Omega3P
(then driven at =12 GHz)

Assumptions:

200 MV/m surface fields (E,..=100 MV/m)
* Tip does not change (fixed f=50)

* No transport phenomena

* No heating effects

* Particles emitted without energy spread

Single microscopic Cu tip maximum emission current can be limited to
protruding from surface of RF simulate “self-healing” of sharp protrusions
structure, RF field shown (|E|) (realistic?)




Pic3P Field Emitter Space-Charge Modeling

space-charge field |E| in vertical symmetry plane DA
b OCl1
Si A% electrons colored by momentum R

HATIOMAL ACCELERATOR LABORATORY




Space-Charge Fields (Contours of |E|=const)

(Case 2)




Field emitter observed in Chamonix, France. MeVArc mini-school on rf acceleration.




E/eCff'Oﬂ emI.SSl.Oﬂ Fowler Nordheim Law (RF fields):

IFN(Ba (I)O’ Ae’ EO)

_ 5.79x10*%exp(9.35¢,"°)A, (BE, )*° —6.53x10% ¢
- 1.75 exp

?o

log(l/E25)
8
o

23.6 =
27 \ 2. Low work function (¢,) in small
<~ areas can cause field emission.
-23.9
h - 1/E(m/V) B
typical picture =» alternate picture =
geometric perturbations (3) material perturbations (¢,)

grain peaks
boundaries oxides

Copper surface

A
Argonne ..




Schottky Enabled Photo-electron Emission
Measurements

ICT

)| (U1
<
|

B Experimental parameters Should not get
— work function of copper = ¢, = 4.65 eV / photoemission
— energy of A=400nm photon = hv=3.1 eV
— Laser pulse length
« Long = 3 ps
« Short = 0.1 ps
— Laser energy ~1 mJ (measured before laser input window)
— Field (55 — 70 MV/m)




->Long Laser Pulse (~ 3ps) -

>E=55 MV/m@ injection phase=80 =» 55sin(80)=54 Pata 2010-10-04

60
® ict —Linear (ict)

50 ¢

y = 125.82x - 10. 065

40 R* = 0.907
L 2
30 %’ Qo

)
= single photon emission
S |20 ’
*
10
0 | | | | |
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Results of the recent work

. "'"Oiﬂbnnn.‘.

Jdaiiaee:

-
-
-
-
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“
LY
-
-
.

Single adatom Two adatoms

DFT ED-MD DFT ED-MD
-0.0177

Partial Charge.q. -0.032 -0.0215 -0.025

Flat surface Surface with one adatom

present DFT  experiment [16]

Work function.eV 4.61 4.46 +0.03 4.30

Flyura Djurabekova, HIP, University of Helsinki
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Molecular Dynamics
Simulations of lon Irradiation
of a Surface under an

Electric Field

S. Parviainen, F. Djurabekova




Sputtering yield vs. field
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What are the CERN DC spark systems?

The CERN DC spark systems consist of an anode

and cathode in a rod-plane geometry in ultrahigh
vacuum. | will be talking about system | which is

powered by the High-Rep-Rate circuit.

The gap size can be varied from 0-100um by using
a stepper motor. It is possible to monitor and
actively control the gap with an accuracy of
~1.5um.

The diameter of the anode is 2.3mm and has a
hemispherical tip.

High voltage is applied across the electrodes and the
resulting current and voltage waveforms are analysed
(largely automatically) and recorded.

The cathodes have a good surface quality.

From these we can tell whether a BD occurred and
measure several properties of the BD such as the turn
on time, the position of the BD within the pulse, the
burning voltage and even the gap distance!

We are not currently able to measure the field
enhancement factor B, with this setup however.

N. Shipman



Evolution of B & E,, during conditioning experiments

* Measurements of (3 after each sparks (Cu electrodes)
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Evolution of B during BDR measurements (Cu)
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* The dislocation motion is strongly bound to the atomic structuv-~ "g
metals. In FCC (face-centered cubic) the dislocation are the m‘f?% EGR<>g0
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Summary of turn on times

Gest Frequency |Measuement |Resut

Simulation dc spark 5-10 ns
New DC System DC Voltage Fall Time 7 ns

Swiss FEL (C-Band) 5.7GHz Transmitted Power Fall Time 110 - 140ns
KEK T24 (X-Band) 12GHz Transmitted Power Fall Time 20-40ns
CTF/TBTSTD24 (X- 12GHz Transmitted Power Fall Time 20-40ns
Band)

CTF SICA (S-Band) 3GHz Transmitted Power 60-140ns

The turn on time could be related to the bandwidth of the
structures or possibly the intrinsic size.
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What is the H

The picture above shows the HRR circuit.
The metal box housing the switch is placed
as close as possible to the vacuum chamber
to minimise stray capacitance.
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The HRR circuit uses a solid state
switch to supply high voltage pulses
(up to 10kV) at a rep rate of up to
1kHz. The energy is stored on a
200m/1us long coaxial cable.
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BDR vs E 14um and 25um gap

Breakdown rate vs electric field
electrode gap 14pm
10 T
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Every 10mins if no BD has occurred the D lecrode gap 25um
HRR circuit is made to pulse at a "
predetermined voltage too low for a BD
to occur, so the gap can be measured
and automatically corrected.
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BDR vs E 40um gap

Breakdown rate vs. electric field
electrode gap 40um
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Both the power law model and the stress model fit the data well. Going to a lower BDR
in the future should help distinguish between them. The exponents obtained for the
power law model are very similar to those obtained in high power RF tests of

accelerating cavities.
The fitted exponent tends to decrease for a larger gap.



Measured Burning Voltages
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The burning voltage was measured across

here.
It is the “steady state” voltage across the

plasma of a spark during a breakdown at
which point most of the voltage is dropped
across the 50 Ohm resistor. It is a property
of the material.

Average voltageé during breakdown after initial voltage fall.
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Measured Burning Voltages

40 Measured burning voltage distribution
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The literature gives a value for the burning voltage of clean copper of ~23V. This is
lower than what | have measure so far in the DC spark system. But | have not
measured or corrected for the short circuit resistance of cables etc.



D24 Pulsed surface heating limit ot

Cell # (cell #1 is a input matching cell): 2167 regular
7 8 9 10 18 cell: 19

It seems that cell #10
(regular cell #9 ~
middle cell) exhibits
the level of damage
which could be
considered as a limit.
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Images courtesy of M. Aicheler: http://indico.cern.ch/getFile.py/access?contribld=08&resld=1&mat
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http://indico.cern.ch/getFile.py/access?contribId=0&resId=1&materialId=slides&confId=106251

Accelerating structures — manufacture

Diffusion Bonding of T18 vg2.4 DISC

Pressure: 60 PSI (60 LB for this structure disks)
Holding for 1 hour at 1020°C

Vacuum Baking of T18_vg2.4_DISC

Stacking disks

Structures ready for test

Temperature treatment for high-gradient
EPFL presentation Walter Wuensch 10 October 2011



Y The End

More information:

CLIC: http://clic-study.org/

CLIC workshop: http://indico.cern.ch/conferenceDisplay.py?confld=275412
Breakdown physics: https://indico.cern.ch/conferenceDisplay.py?confld=246618
High-gradient structures:
http://indico.cern.ch/conferenceDisplay.py?confld=231116

Further applications:

https://indico.desy.de/conferenceDisplay.py?confld=6537

16 November 2012 CLIC meeting Walter Wuensch
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