# Tackling Light Higgsinos at the ILC

### Hale Sert

In collaboration with Mikael Berggren, Felix Brümmer, Jenny List, Gudrid-Moortgat-Pick, Tania Robens, Krzysztof Rolbiecki

DESY Hamburg University

LCWS 2013











### **Outline**

- Introduction
  - Natural SUSY
- Model Properties
  - ► Light Higgsino Scenario
  - Production Processes and Decay Modes
  - Higgsino Signatures and Challenges
- Measurement Strategy
  - ▶ Mass of  $\tilde{\chi}_1^{\pm}$  &  $\tilde{\chi}_2^{0}$  Measurement
  - Mass difference Measurement
  - Polarized Cross Section Measurement
- Event Selection
- ➤ Analysis Results
- Parameter Determination
- Conclusion



### **Natural SUSY**

Z boson mass in one-loop level is given as

$$\begin{array}{rcl} m_Z^2 & = & 2\frac{\left(m_{H_u}^2 + \Sigma_u^u\right)\tan^2\beta - m_{H_d}^2 - \Sigma_d^d}{1 - \tan^2\beta} - 2|\mu|^2 \\ \\ \left[ \text{@ large } \tan\beta \right] \\ m_Z^2 & = & -2(m_{H_u}^2 + \Sigma_u^u + |\mu|^2) \end{array}$$

with  $H_u$  is a SM-like Higgs.

Naturalness requires to have higgsino mass parameter  $\mu$  at the electroweak scale.

- $\blacktriangleright \mu^2 \sim m_Z^2/2 \text{ GeV} \rightarrow \text{Light Higgsinos}$
- lacksquare In one-loop level  $\Sigma( ilde{t}_{1,2})\sim m_Z^2/2$  GeV ightarrow Light Stops



### Natural SUSY

Z boson mass in one-loop level is given as

$$\begin{array}{rcl} m_Z^2 & = & 2\frac{\left(m_{H_u}^2 + \Sigma_u^u\right)\tan^2\beta - m_{H_d}^2 - \Sigma_d^d}{1 - \tan^2\beta} - 2|\mu|^2 \\ \\ \left[ \text{@ large } \tan\beta \right] \\ m_Z^2 & = & -2(m_{H_u}^2 + \Sigma_u^u + |\mu|^2) \end{array}$$

with  $H_u$  is a SM-like Higgs.

Naturalness requires to have higgsino mass parameter  $\mu$  at the electroweak scale.

- $ightharpoonup \mu^2 \sim m_Z^2/2 \text{ GeV} 
  ightharpoonup \text{Light Higgsinos}$
- ightharpoonup In one-loop level  $\Sigma( ilde{t}_{1,2})\sim m_Z^2/2~{\sf GeV}
  ightarrow {\sf Light~Stops}$



### Scenario contains

- ightharpoonup 3 light higgsinos:  $\tilde{\chi}_1^{\pm}$  &  $\tilde{\chi}_1^0$  &  $\tilde{\chi}_2^0$
- ightharpoonup Almost mass degenerate:  $\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$  &  $\Delta M(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$   $\sim$  a (sub) GeV
- > All other supersymmetric particles are heavy up to a few TeV

#### Two benchmark points are considered

 $\begin{array}{c|c} \textbf{dm1600} \\ \textbf{Mass Spectrum} \\ \textbf{Particle} & \textbf{Mass (GeV)} \\ \textbf{h} & 124 \\ \hline \tilde{x}_{1}^{0} & 164.17 \\ \tilde{x}_{1}^{\pm} & 165.77 \\ \hline \tilde{x}_{2}^{0} & 166.87 \\ \textbf{H's} & \sim 10^{3} \\ \hline \tilde{x}'s & \sim 2-3 \times 10^{3} \\ \end{array}$ 

$$\Delta M( ilde{\chi}_1^\pm, ilde{\chi}_1^0)=1.59$$
 GeV

| dm770    |            |  |  |
|----------|------------|--|--|
|          |            |  |  |
| Particle | Mass (GeV) |  |  |
|          |            |  |  |
|          |            |  |  |
|          |            |  |  |
|          |            |  |  |
|          |            |  |  |
|          |            |  |  |

$$\Delta M( ilde{\chi}_1^{\pm}, ilde{\chi}_1^{0})=0.77$$
 GeV

But also high scale models, for ex.: "Hybrid Gauge-Gravity Mediated Supersymmetry Breaking Models" Ref: F. Brummer et al. hep-ph:1201.4338



# Light Higgsino Scenario

#### Scenario contains

- ightharpoonup 3 light higgsinos:  $\tilde{\chi}_1^\pm$  &  $\tilde{\chi}_1^0$  &  $\tilde{\chi}_2^0$
- ightharpoonup Almost mass degenerate:  $\Delta M( ilde{\chi}_1^\pm, ilde{\chi}_1^0)$  &  $\Delta M( ilde{\chi}_2^0, ilde{\chi}_1^0)$   $\sim$  a (sub) GeV
- ➤ All other supersymmetric particles are heavy up to a few TeV

### Two benchmark points are considered:

 $\begin{array}{c|c} \textbf{dm1600} \\ \hline \textbf{Mass Spectrum} \\ \textbf{Particle} & \textbf{Mass (GeV)} \\ \hline \textbf{h} & 124 \\ \hline \tilde{\chi}_{1}^{0} & 164.17 \\ \tilde{\chi}_{1}^{\pm} & 165.77 \\ \tilde{\chi}_{2}^{0} & 166.87 \\ \hline \textbf{H's} & \sim 10^{3} \\ \tilde{\chi}'\text{s} & \sim 2 - 3 \times 10^{3} \\ \hline \end{array}$ 

$$\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) = 1.59 \text{ GeV}$$

| am <i>i i</i> v               |               |  |  |  |
|-------------------------------|---------------|--|--|--|
| Mas                           | Mass Spectrum |  |  |  |
| Particle   Mass (GeV)         |               |  |  |  |
| h 127                         |               |  |  |  |
| $	ilde{\chi}^0_1$             | 166.59        |  |  |  |
| $	ilde{\chi}_1^\pm$           | 167.36        |  |  |  |
| $\tilde{\chi}_{2}^{0}$ 167.63 |               |  |  |  |
| H's                           | $\sim 10^3$   |  |  |  |

$$egin{array}{c|c} ilde{\chi}$$
's  $\sim 2-3 imes 10^3 \ \Delta M( ilde{\chi}_1^\pm, ilde{\chi}_1^0) = 0.77 \; {\sf GeV} \ \end{array}$ 

But also high scale models, for ex.: "Hybrid Gauge-Gravity Mediated Supersymmetry Breaking Models" Ref: F. Brummer et al. hep-ph:1201.4338



# Production Processes

#### **Production Processes:**

$$e^+e^-
ightarrow ilde{\chi}_1^+ ilde{\chi}_1^- \ e^+e^-
ightarrow ilde{\chi}_1^0 ilde{\chi}_2^0$$

### Chargino Production Diagrams:



t-channel is suppressed /  $Z - \gamma$  interference

#### Neutralino Production Diagrams:



t-channels are suppressed / No  $\emph{Z}-\gamma$  interference

### Strong polarization dependence



#### Weak polarization dependence



# **Decay Modes of the Higgsinos**

### **Decay Modes**

$$ightharpoonup ilde{\chi}_1^{\pm} 
ightarrow ilde{\chi}_1^0 W^{\pm *}$$

$$ightharpoonup ilde{\chi}^0_2 
ightarrow ilde{\chi}^0_1 Z^{0*}$$

$$\succ \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \gamma$$





### Separation of Signal Processes

Exclusive decay modes:

- $\sim \tilde{\chi}_1^+ \tilde{\chi}_1^+ \to 2 \tilde{\chi}_1^0 \ W^{+*} \ W^{-*}$
- ▶ semileptonic final state (30.5%, 35%)
- $ightharpoonup ilde{\chi}_1^0 ilde{\chi}_2^0 
  ightarrow 2 ilde{\chi}_1^0 Z^{0*}/\gamma$
- ▶ photonic final state (23.6%, 74%)



BRs depend crucially on  $\Delta M$ 

 $\Delta m_{\widetilde{\chi}_1}$  (GeV)



# **Higgsino Signatures and Challenges**



### In the Final State

- ➤ A few soft visible particles
- ightharpoonup A lot of missing energy (2  $\tilde{\chi}_1^0$ )



# **Higgsino Signatures and Challenges**



It is extremely challenging for LHC to observe or resolve such low energetic and degenerate particles





## Standard Model Backgrounds



#### In the final state:

➤ 2 fermions with low energy, which is very similar to the signal



Ref: PhD thesis of C. Hensel



## Standard Model Backgrounds

 $\gamma\gamma \rightarrow 2f$ 



#### In the final state:

2 fermions with low energy, which is very similar to the signal

Signal Two-photon Background

Ref: PhD thesis of C. Hensel

We have required hard ISR photon,

$$e^+e^- 
ightarrow ilde{\chi}_1^+ ilde{\chi}_1^- \gamma 
onumber \ e^+e^- 
ightarrow ilde{\chi}_1^0 ilde{\chi}_2^0 \gamma 
onumber$$

to avoid this similarity of the final states.

Additional γ makes the beam electron visible in the detector.





## **Standard Model Backgrounds**





#### In the final state:

2 fermions with low energy, which is very similar to the signal



We have required hard ISR photon,

$$egin{aligned} e^+e^- &
ightarrow ilde{\chi}_1^+ ilde{\chi}_1^- \gamma \ e^+e^- &
ightarrow ilde{\chi}_1^0 ilde{\chi}_2^0 \gamma \end{aligned}$$

to avoid this similarity of the final states.

- Additional γ makes the beam electron visible in the detector.
- \* This method is a well-known trick for  $\gamma\gamma\to 2f$  background
- \* In this study, it has been observed that this method doesn't work for  $e\gamma o 3f$  background



## **Analysis Overview**

#### Software:

- Signal events are generated with Whizard (ILC-Whizard by generator group) Ref: Wolfgang Kilian et al., hep-ph: 0708.4233v2
  - ► Branching ratios are calculated by Herwig++ Ref: M. Bahr et.al., Eur. Phys. J., C58:639–707, 2008
- DBD generated samples for SM backgrounds
- Apply fast detector simulation SGV (ILD DBD version of SGV)

Ref: M. Berggren, physics.ins-det: 1203.0217

- Track efficiency is applied for low P<sub>t</sub>
  - Signals
  - Dominating SM backgrounds





From full simulation including  $t\bar{t}$  events and pair background



# **Analysis Overview**

#### Data Set:

- $\sim$   $\sqrt{s} = 500 \text{ GeV}$
- $ightharpoonup \int \mathcal{L}dt = 500 \text{ fb}^{-1} \text{ for each polarization}$
- > Polarization:

$$P_{e^+} = +30\%$$
 ,  $P_{e^-} = -80\%$ 

$$ho$$
  $P_{e^+}=-30\%$  ,  $P_{e^-}=+80\%$ 

Cross Sections are calculated by whizard

### Aim of the Study:

#### To measure

- ightharpoonup mass of the  $\tilde{\chi}_1^{\pm}$  &  $\tilde{\chi}_2^{0}$ .
- $\blacktriangleright$  mass difference between  $ilde{\chi}_1^\pm$  &  $ilde{\chi}_1^0$ .
- > precision on the polarized cross section

#### To check

 $\triangleright$  if the measurements are good enough to determine  $\mu$ ,  $M_1$ ,  $M_2$  and  $\tan \beta$ 



# **Measurement Strategy**

 $\tilde{\chi}_1^{\pm}$  &  $\tilde{\chi}_2^0$  Mass Measurement ( $M_{\tilde{\chi}_1^{\pm}}$  &  $M_{\tilde{\chi}_2^0}$ ):

Recoil mass of hard ISR photon is used to measure mass of  $\tilde{\chi}_1^{\pm}$  &  $\tilde{\chi}_2^{0}$  Reduced CM Energy:

$$s' = s - 2\sqrt{s}E^{\gamma}$$

- $ightarrow \sqrt{s'} = 2 imes M_{ ilde{\chi}}$  if 2  $ilde{\chi}$  are produced at rest
- $\triangleright$  Fitting gives  $M_{\tilde{\chi}}$ .

However; this method is an approximation, since

- formula is obtained only after some assumptions
- $\rightarrow \sqrt{s}$  is assumed 500 GeV

Hence,

➤ Calibration is applied to the masses.





## **Measurement Strategy**

## Mass Difference Measurement $(\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{0}))$ :

ightharpoonup Boost decay products to the rest frame of  ${ ilde \chi}_1^\pm$ 

Boosted Energy:

$$E_{\pi}^* = \frac{(\sqrt{s} - E^{\gamma})E^{\pi} + \mathbf{P}^{\pi} \cdot \mathbf{P}^{\gamma}}{2M_{\tilde{\chi}_1^{\pm}}}$$

At the rest frame of  $\tilde{\chi}_1^{\pm}$ ;

 $\succ$   $\tilde{\chi}_1^0$  is produced at rest,

$$E_{\pi}^{*} = \frac{(M_{\tilde{\chi}_{1}^{\pm}} - M_{\tilde{\chi}_{1}^{0}})(M_{\tilde{\chi}_{1}^{\pm}} + M_{\tilde{\chi}_{1}^{0}}) + m_{\pi}^{2}}{2M_{\tilde{\chi}_{1}^{\pm}}}$$

$$E_{\pi}^{*} = \frac{1}{1/\Delta M + 1/\sum M} + \frac{m_{\pi}^{2}}{2M_{\tilde{\chi}_{1}^{\pm}}}$$

$$ightharpoonup E_{decays}^* = \Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$$



# **Measurement Strategy**

$$\tilde{\chi}_1^{\pm}$$
 &  $\tilde{\chi}_2^0$  Mass Measurement ( $M_{\tilde{\chi}_1^{\pm}}$  &  $M_{\tilde{\chi}_2^0}$ ):

Recoil mass of hard ISR photon is used to measure mass of  $ilde{\chi}_1^+$  &  $ilde{\chi}_2^0$ 

Reduced CM Energy:  $s' = s - 2\sqrt{s}E^{\gamma}$ 

### Mass Difference Measurement ( $\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{0})$ ):

Boost decay products to the rest frame of  $\tilde{\chi}_1^\pm$   $(E_{decays}^* = \Delta M(\tilde{\chi}_1^\pm, \tilde{\chi}_1^0))$ 

Boosted Energy: 
$$E_{\pi}^* = \frac{(\sqrt{s} - E^{\gamma})E^{\pi} + \mathbf{P}^{\pi} \cdot \mathbf{P}^{\gamma}}{2M_{\tilde{\chi}_1^{\pm}}}$$

## Polarized Cross Section Measurement ( $\delta\sigma_{polarized}/\sigma_{polarized}$ )

Statistical precision on polarized cross section

$$rac{<\!\delta\sigma_{meas}>}{<\!\sigma_{meas}>} = rac{1}{\sqrt{\epsilon\cdot\pi\cdot\int\mathcal{L}dt\cdot\sigma_{signal}}}$$

$$\sigma_{\textit{meas}} = \sigma_{\textit{polarized}} \times \textit{BR}(\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow 2\tilde{\chi}_1^0, \pi, e(\mu))$$

Estimated Precison is based on efficiency and purity



### **Event Selection**

 Preselection is applied to suppress the SM background

### Chargino Selection

- Select semi-leptonic decay modes
  - ▶  $1 \pi$  and  $(1 \text{ e or } 1 \mu)$
- >  $E_{\pi}^{*} < 3 \text{ GeV}$
- $ightharpoonup \Phi_{acop} < 2 ext{ or } \sqrt{s'} < 480 ext{ GeV}$

#### Neutralino Selection

- > Select photon decay modes
  - Only photons
- $\triangleright |\cos \theta_{\gamma soft}| < 0.85$
- $ightharpoonup E_{\gamma_{soft}}^* > 0.5 \text{ GeV}$



After Chargino Selection

### **Event Selection**

 Preselection is applied to suppress the SM background

#### Chargino Selection

- Select semi-leptonic decay modes
  - $\blacktriangleright$  1  $\pi$  and (1 e or 1  $\mu)$
- >  $E_{\pi}^{*} < 3 \text{ GeV}$
- $ightharpoonup \Phi_{acop} < 2 ext{ or } \sqrt{s'} < 480 ext{ GeV}$

#### Neutralino Selection

- > Select photon decay modes
  - Only photons
- $\triangleright |\cos \theta_{\gamma soft}| < 0.85$
- $\succ E_{\gamma_{soft}}^* > 0.5 \text{ GeV}$



After Neutralino Selection

# $\tilde{\chi}_1^+$ Mass Measurement & Calibration







# $\tilde{\chi}_1^+$ Mass Measurement & Calibration



# $\tilde{\chi}_1^+$ Mass Measurement & Calibration



# $\tilde{\chi}_2^0$ Mass Measurement & Calibration







# $\tilde{\chi}_2^0$ Mass Measurement & Calibration











# $\tilde{\chi}_2^0$ Mass Measurement & Calibration





## **Mass Difference Measurement**





## **Mass Difference Measurement**



## **Mass Difference Measurement**



## **Polarized Cross Section Measurement**

### Efficiency, Purity and Precison on Polarized Cross Sections:

| Polarizations                                                                | $P(e^+, e^-) = (+30\%, -80\%)$             |                                          | $P(e^+, e^-)$                              | =(-30%, +80%)                            |
|------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------|
| Processes                                                                    | $\tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$ | $	ilde{\chi}_2^0 	ilde{\chi}_1^0 \gamma$ | $\tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$ | $	ilde{\chi}_2^0 	ilde{\chi}_1^0 \gamma$ |
| dm1600                                                                       |                                            |                                          |                                            |                                          |
| BR of selected mode                                                          | 30.5 %                                     | 23.6 %                                   | 30.5 %                                     | 23.6 %                                   |
| Efficiency( $\epsilon$ )                                                     | 9.9 %                                      | 5.8 %                                    | 9.5 %                                      | 6.0 %                                    |
| Purity $(\pi)$                                                               | 70.1%                                      | 67.4 %                                   | 36.4 %                                     | 62.3 %                                   |
| $\frac{\langle \delta \sigma_{meas} \rangle}{\langle \sigma_{meas} \rangle}$ | 1.9 %                                      | 3.2 %                                    | 5.3 %                                      | 3.7 %                                    |
| dm770                                                                        |                                            |                                          |                                            |                                          |
| BR of selected mode                                                          | 34.7 %                                     | 74.0 %                                   | 34.7 %                                     | 74.0 %                                   |
| Efficiency( $\epsilon$ )                                                     | 12.1 %                                     | 17.1 %                                   | 12.2 %                                     | 17.2%                                    |
| $Purity(\hat{\pi})$                                                          | 85.3 %                                     | 85.8 %                                   | 56.1 %                                     | 82.5 %                                   |
| $\frac{\langle \delta \sigma_{meas} \rangle}{\langle \sigma_{meas} \rangle}$ | 1.6 %                                      | 1.7 %                                    | 3.8 %                                      | 1.9 %                                    |

- ➤ Efficiencies are almost same for both polarizations
- Huge difference between purities for both polarizations in the chargino processes are due to the strong polarization dependence

$$\frac{<\!\delta\sigma_{meas}>}{<\!\sigma_{meas}>} = rac{1}{\sqrt{\epsilon \cdot \pi \cdot \int \mathcal{L} ext{dt} \cdot \sigma_{signal}}}$$

 $\sigma_{meas} = \sigma_{polarized} \times BR$ 

 $\triangleright$  Cross sections can be measured more precisely using the polarisation with  $e_R^+e_L^-$ 



## **Parameter Determination**

Parameters related to chargino and neutralino sector:

$$M_1$$
,  $M_2$ ,  $\mu$ ,  $\tan \beta$ 

Used parameters for the fit

- $ightharpoonup M_{\tilde{\chi}_1^{\pm}}, M_{\tilde{\chi}_2^0}, \Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$
- ightharpoonup Statistical precision on the cross sections  $(\delta\sigma/\sigma)$

#### Fit Procedure

- $\blacktriangleright$  tan  $\beta$  is fixed in the range [1,60]
- $\triangleright$  Fit the mass parameters;  $\mu$ ,  $M_1$  and  $M_2$ .

#### Parameter determination @ High Luminosity

- $\triangleright$  Luminosity is increased to  $\int Ldt = 2 \ ab^{-1}$  for each polarization
- ➤ It is assumed that experimental errors would be reduced by a factor 2
- The measurement of the  $\Delta M(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$  is also included (not measured in this analysis)



# Electroweakino parameters & experimental observables

#### Relation between electroweakino parameters and experimental observables

Tree level masses in the case that  $M_1$  &  $M_2$  are large ( $\theta_W \rightarrow Weinberg angle$ )

$$\begin{array}{rcl} \textit{M}_{\tilde{\chi}_{1}^{\pm}} & = & |\mu| - \sin 2\beta \textit{sign}(\mu) \cos^{2}\theta_{W} \frac{m_{Z}^{2}}{M_{2}} \\ \textit{M}_{\tilde{\chi}_{1,2}^{0}} & = & |\mu| \pm \frac{m_{Z}^{2}}{2} (1 \pm \sin 2\beta \textit{sign}(\mu)) \left( \frac{\sin^{2}\theta_{W}}{M_{1}} + \frac{\cos^{2}\theta_{W}}{M_{2}} \right) \end{array}$$

- ightharpoonup They are **weakly** dependent on tan  $\beta$
- $\blacktriangleright$   $\mu$  determines  $M_{\tilde{\chi}^0_2}$  &  $M_{\tilde{\chi}^\pm_1}$

$$\begin{array}{lcl} \mathit{M}_{\tilde{\chi}_{1}^{\pm}}-\mathit{M}_{\tilde{\chi}_{1}^{0}} & = & \frac{m_{Z}^{2}}{2} \left( \frac{\sin^{2}\theta_{W}}{\mathit{M}_{1}} + \frac{\cos^{2}\theta_{W}}{\mathit{M}_{2}} \right) + \mathcal{O}\left( \frac{\mu}{\mathit{M}_{i}^{2}}, \frac{1}{\tan\beta} \right) \\ \mathit{M}_{\tilde{\chi}_{2}^{0}}-\mathit{M}_{\tilde{\chi}_{1}^{0}} & = & m_{Z}^{2} \left( \frac{\sin^{2}\theta_{W}}{\mathit{M}_{1}} + \frac{\cos^{2}\theta_{W}}{\mathit{M}_{2}} \right) + \mathcal{O}\left( \frac{\mu}{\mathit{M}_{i}^{2}} \right) \end{array}$$

 $ightharpoonup M_1 \& M_2$  determine  $\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \& \Delta M(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$ 



### **Parameter Determination**

#### Results

- $\triangleright$  Lower limits and allowed regions for  $M_1$  and  $M_2$  can be obtained from the correlation between  $M_1$  and  $M_2$
- ightharpoonup For  $M_1 < 0$ , low values of an eta are excluded

 $\blacktriangleright$  When  $M_1 \sim$ -500 GeV, direct production of  $\tilde{\chi}^0_3$  could be possible at 1 TeV



 $ightharpoonup \mu$  parameter can be determined with 6.8(2.5) GeV statistical precision for dM1600(dM770) scenario.

| $0.500 \; \mathrm{fb}^{-1}$ | input | lower            | upper |
|-----------------------------|-------|------------------|-------|
| $ M_1 $ [TeV]               | 1.7   | $\sim 0.8(-0.4)$ | no    |
| $M_2$ [TeV]                 | 4.4   | $\sim 1.5(1.0)$  | no    |
| $\mu \; [GeV]$              | 165.7 | 165.2            | 172.5 |

| $0 500 \text{ fb}^{-1}$ | input | lower          | upper |
|-------------------------|-------|----------------|-------|
| $ M_1 $ [TeV]           | 5.3   | $\sim 2(-0.3)$ | no    |
| $M_2$ [TeV]             | 9.5   | $\sim 3(1.2)$  | no    |
| $\mu \; [GeV]$          | 167.2 | 164.8          | 167.8 |



## Parameter Determination at High Luminosity

#### Results:

- Inclusion of  $\Delta M(\tilde{\chi}^0_2, \tilde{\chi}^0_1)$  breaks the dependency of  $M_1$  &  $M_2$  on the low  $\tan \beta$  region
- ightarrow In dM1600 scenario, if  $M_1 < 0$  it gets very small values for moderate aneta
- ightharpoonup dM770 scenario has valid solutions only for  $M_1>0$



 $\blacktriangleright$  Increased luminosity narrows the allowed region for  $\mu$  parameter

| @ 2 ab     | -1 | input | lower                | upper      |
|------------|----|-------|----------------------|------------|
| $M_1$ [Te  | V] | 1.7   | $\sim 1.0 \; (-0.4)$ | $\sim 6.0$ |
| $M_2$ [Te  | V] | 4.4   | $\sim 2.5 (3.5)$     | $\sim$ 8.5 |
| $\mu$ [Ge\ | /] | 165.7 | 166.2                | 170.1      |

| $0 \ 2 \ ab^{-1}$ | input | lower    | upper     |
|-------------------|-------|----------|-----------|
| $M_1$ [TeV]       | 5.3   | ~ 3      | no        |
| $M_2$ [TeV]       | 9.5   | $\sim 7$ | $\sim 15$ |
| $\mu$ [GeV]       | 167.2 | 165.2    | 167.4     |

## Parameter Determination at High Luminosity

#### Results:

- Inclusion of  $\Delta M(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$  breaks the dependency of  $M_1$  &  $M_2$  on the low  $\tan \beta$  region
- $\blacktriangleright$  In dM1600 scenario, if  $M_1 < 0$  it gets very small values for moderate an eta
- ightharpoonup dM770 scenario has valid solutions only for  $M_1>0$



ightharpoonup Increase  $\Delta M( ilde{\chi}^0_2, ilde{\chi}^0_1)$  has an important parameter for the fit! er

| @ 2 ab <sup>-1</sup> | input | lower            | upper |
|----------------------|-------|------------------|-------|
| $M_1$ [TeV]          | 1.7   | ~ 1.0 (-0.4)     | ~ 6.0 |
| $M_2$ [TeV]          | 4.4   | $\sim 2.5 (3.5)$ | ~ 8.5 |
| $\mu^{\text{[GeV]}}$ | 165.7 | 166.2            | 170.1 |

| @ 2 ab <sup>-1</sup> | input | lower    | upper     |
|----------------------|-------|----------|-----------|
| $M_1$ [TeV]          | 5.3   | ~ 3      | no        |
| $M_2$ [TeV]          | 9.5   | $\sim 7$ | $\sim 15$ |
| $\mu$ [GeV]          | 167.2 | 165.2    | 167.4     |

### Conclusion

### **Summary**

- Naturalness leads to have light higgsinos
- Studied extreme case of no other sparticles accessible at the ILC
- Separation of Higgsinos at the reconstructed level is possible at the ILC
- $\blacktriangleright$   $\delta M_{\tilde{\chi}_1^{\pm}}(M_{\tilde{\chi}_2^0})$ ,  $\delta \Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$ , and  $\delta(\sigma \times BR)$  are small
- Precision is sufficent
  - lacktriangle to determine  $\mu$  to a few percent
  - lacktriangle to constrain  $M_1, M_2$  to narrow band, especially after adding  $\Delta M( ilde{\chi}^0_2, ilde{\chi}^0_1)$

#### Outlook

- Do the analysis with full simulation
- ightharpoonup Measure neutralino mass difference,  $\Delta M(\tilde{\chi}_2^0, \tilde{\chi}_1^0)$





# **Backup**

### **Event Selection**

#### Preselection:

- Require 1 photon
  - with  $E_{\infty}^{max} > 10 \text{ GeV}$
  - ▶ within the acceptance of TPC
- No significant activity in the BeamCal
- ➤ Less than 15 reconstructed particles
- ➤ E<sub>decay products</sub> < 5 GeV</p>
- $\succ$   $E_{miss} > 300 \text{ GeV}$
- ➤ Both soft decay products and missing particles are required not to be in the forward region



After PreSelection

### Mass Measurement Procedure

#### Fitting Procedure

- > Fitting is done in the following order:
  - SM background is fitted with an exponential function assuming that we can precisely predict SM background.
  - SM background is fixed.
  - ▶ SM background + Signal are fitted using linear function for signal.



### **Calibration Procedure**

- Choose different true masses (X-axis)
- Apply measurement and get fitted masses (Y-axis)
- Obtain calibration curve

