Speaker
Description
In this talk, I discuss the phenomenology of a minimal model for GeV-scale Majorana dark matter (DM) coupled to the standard model lepton sector via a charged scalar singlet. The theoretical framework extends the Standard Model by two $SU(2)_L$ singlets: one charged Higgs boson and a singlet right-handed fermion. The latter plays the role of the DM candidate. We show that there is an anti-correlation between the spin-independent DM-Nucleus scattering cross-section ($\sigma_{\rm SI}$) and the DM relic density for parameters values allowed by various theoretical and experimental constraints. Moreover, we find that even when DM couplings are of order unity, $\sigma_{\rm SI}$ is below the current experimental bound but above the neutrino floor. Furthermore, we show that the considered model can be probed at High Energy lepton colliders using e.g. the mono-Higgs production and same-sign charged Higgs pair production.
1st preferred time slot for your oral presentation | 13:00-15:00 JST (6:00-8:00 CEST, 0:00-2:00 EDT, 21:00-23:00 PDT) |
---|---|
2nd preferred time slot for your oral presentation | 19:00-21:00 JST (12:00-14:00 CEST, 6:00-8:00 EDT, 3:00-5:00 PDT) |