Conveners
C-1: Tracking detectors
- Dominik Dannheim (CERN)
The success of the Belle II experiment at KEK (Japan) relies on the very high instantaneous luminosity, close to 6x10^35 cm-2 s-1, expected from the SuperKEKB collider. The beam conditions to reach such luminosity levels generate a large rate of background particles in the inner detection layers of Belle II. The hit rate in the innermost vertex detector layer will exceed 100 MHz/cm2...
The CLIC Tracker Detector (CLICTD) is a monolithic CMOS silicon pixel sensor that targets the requirements for the tracking detector of the Compact Linear Collider (CLIC). CLICTD is characterised by a small collection diode that allows for a low sensor capacitance and consequently a high signal-to-noise ratio. The front-end design features an innovative sub-pixel segmentation scheme to reduce...
A Monolithic CMOS Pixel Sensors (CPS), MIMOSIS, is currently being developed in the TJ-180nm technology by IPHC/IKF/GSI to equip the Micro-Vertex Detector (MVD) of the CBM heavy ion experiment at FAIR/GSI and within the CREMLIN+ program. Thanks to its targeted performances (5 microns spatial resolution/5 micro-second time resolution) MIMOSIS will reach a milestone for the ILC vertex detector...
High-voltage CMOS detectors are based on innovative structure where a pixel consists of a single collection electrode with readout electronics placed in it. High-voltage CMOS detectors can be thinned to about 50µm, they have relatively low current consumption and high spatial resolution. Since they are implemented in a commercial CMOS process, the production of large area sensors is...
Within the ATTRACT FASTpix project, a monolithic pixel sensor demonstrator chip has been developed in a modified 180 nm imaging CMOS process technology, targeting sub-nanosecond timing measurements for single ionising particles. It features a small collection-electrode design on a 30 micron deep epitaxial layer and contains 32 mini matrices of 68 hexagonal pixels each, 4 transmitting an analog...
A monolithic silicon CMOS pixel detector with time-stamping capability (Chronopixel)has been developed based on design goals of the International Linear Collider (ILC). Each hit is accompanied by a time tag with sufficient precision to assign it to a particular ILC bunch crossing - thus the name Chronopixel. This reduces the occupancy to negligible levels, even in the innermost vertex detector...
A monolithic silicon CMOS pixel detector with time-stamping capability (Chronopixel)
has been developed based on design goals of the International Linear Collider
(ILC). Each hit is accompanied by a time tag with sufficient precision to
assign it to a particular ILC bunch crossing - thus the name Chronopixel. This
reduces the occupancy to negligible levels, even in the innermost vertex...