In the past, homogeneous electromagnetic calorimeters have allowed precision measurements of electrons and photons, while high-granularity, dual-readout, and compensating calorimeters have been considered promising paths for improving hadronic measurements. In this talk, the possibility of using a homogeneous high-granularity crystal electromagnetic calorimeter using SiPMs with a spaghetti...
We have fond a relation between the energy deposit and track length in a homogeneous calorimeter situation with GEANT4 at high energy. The relation holds for different materials of the calorimeter from 1 to 100GeV energy range. The energy deposit and track length have a linear relation with positive intercept for both of pions and electrons. The tilt of the straight lines for pion and electron...
Conventional LGADs, of the type to be used in the timing layers of
the upgraded ATLAS and CMS detectors, are unable to provide granularity
finer than the millimeter scale. As a result, a number of
refined approaches are under development to overcome limiting junction
termination requirements and allow for granularity at the 100 um scale
or finer. One such approach, the Deep Junction LGAD,...
One of the physics challenges for new detectors at an e+e- linear collider is to distinguish W and Z vector bosons in their hadronic decay mode. This requires a di-jet mass resolution of the order of the natural width of these bosons and hence a jet energy resolution of about 3%. For hadron calorimetry this means that the required energy resolution be a factor of about two better than...
During last year, we made significant progress about the material structures that make the fabrication of a DoTPiX pixel and pixel array a reachable goal. The trend is to obtain a small pixel reaching the 1 micrometre x 1 micrometre scale. The structure was simulated as early as 2017 (N. Fourches, IEEE TED 2017) to assess tits electrical and detector capabilities. A work-group was founded with...