Experiments at a future 𝑒+𝑒− collider will be able to search for new particles with masses below the nominal centre-of-mass energy by analyzing collisions with initial-state radiation (radiative return). We show that machine learning methods based on semisupervised and weakly supervised learning can achieve model-independent sensitivity to the production of new particles in radiative return...
"The direct pair-production of the tau-lepton superpartner, stau, is one
of the most interesting channels to search for SUSY. First of all the stau is
with high probability the lightest of the scalar leptons. Secondly the
signature of stau pair production signal events is one of the most difficult
ones, yielding to the 'worst' and so most global scenario for the searches.
The current...
We studied phenomenological implications of numerous Family Non-Universal U(1)′ sub-models in the minimal U(1)′ extended Supersysmmetric Model (UMSSM) possessing an extra down quark type exotic field. In doing this, we started with anomaly cancellation criteria to generate a number of solutions in which the extra U(1)' charges of the particles are treated as free parameters. We imposed...
LHC has produced several indications for new scalars. This talk intends to interpret them within the Georgi Machacek scheme and predict there cross section in e+e-. It follows a presentation delivered at LCWS21 and attemps to complete this presentation showing how the GM model needs to be amplified to take into account the various observations.
References:
[1] Indications for extra...
The experimental observations from the colliders established the standard model (SM), the most successful phenomenological framework to explain the non-gravitational interactions of fundamental particles at high energy. Non-zero neutrino mass and dark matter cast a shadow
over its success. This necessitates the extension of the SM. The most straightforward and elegant extension of the SM to...
It is commonly believed that Dark Matter (DM) should exist in the form of new, Beyond-the-Standard-Model stable particles.
Despite continued efforts, such particles have not yet been detected, which means that interactions between DM and SM must be very weak. Dark particles, even if they are already produced at existing colliders, evade detection due to tiny signal-to-background...