Using the method of massive operator matrix elements, we calculate the subleading logarithmic QED initial state radiation corrections to the process $e^+ e^- \to \gamma^* / Z^*$ in the limit of large center of mass energies $s \gg m_e^2$ up to $O(\alpha^6)$. We furthermore generalize the calculation to the leading logarithmic corrections to the forward-backward asymmetry to the same order....
While QED is a simpler theory than QCD, there are issues related to mass effects and collinear emissions that are specific to higher-order calculations in QED. We discuss our recent approach to tackle these problems, present a first complete NNLO QED calculation for a massive 2->2 process and discuss the impact of these developments on physics at a linear collider.
We summarize the status of the multi-purpose event generator Whizard 3 for ILC physics. The focus will be on the UFO interface for BSM models and NLO SM automation. We also cover the top threshold and a few aspects on performance and usage.
One of the challenges in times of preparing for a next large-scale collider is to properly model its performance. For physical analyses, event generation of signal and background events is often crucial to estimate discovery reach of the machine for New Physics. In many cases, not only should beam collision background samples be analysed, but also there is a need to include background events...
Future electron-positron colliders will allow us to test Standard Model physics, especially for the electroweak sector, to an unprecedented level of precision, which could reveal signs for new physics that were previously inaccessible. This requires the theory side to put effort into two aspects. First, we need to link observables predicted by models to the experimental process in a...