Conveners
R-1: Machine - Sources: ILC Accelerator source session
- Masao Kuriki (Hiroshima U./KEK)
In the international linear collider (ILC), a high-intense electron beam passes through a helical undulator to produce a multi-MeV circularly polarized photon beam before it is directed to the interaction point (IP). The photon beam hits a thin rotating target to produce electron positron pairs. A maximum active undulator length of 231 m is foreseen to be appropriate for the ILC 250 GeV...
The ILC target materials, Ti-Alloys, radiated at MAMI with a PEDD corresponding to expectations at the ILC, have been analyzed in detail via synchrotron diffraction methods. The methods and the results are discussed in detail in this talk.
Future high energy colliders like the ILC require high intensity positron beams to achieve their targeted high luminosities. The intensity of positron beams is partially defined by the amount of positrons that can be provided by the positron source, which arises from the amount of originally produced positrons and the fraction that can be captured and transported, the so-called yield. In...
The optical matching device (OMD) is responsible for matching the positron beam, produced in the target, according to the damping ring acceptance. This makes the OMD a crucial component for the number of positrons available in the collision experiments. The active plasma lens (APL) is a current-carrying plasma with the potential of being an innovative alternative for traditional OMD concepts...