Speaker
Description
In this study we investigate the feasibility of detecting heavy neutral leptons ($N_d$) through exotic Higgs decays at the proposed International Linear Collider (ILC), specifically in the channel of $e^+ e^- \to qq~ H$ with $H\to \nu N_d \to \nu~lW \to \nu l~qq$. Analyses based on full detector simulations of the ILD are performed at the center-of-mass energy of 250 GeV for two different beam polarization schemes with a total integrated luminosity of 2 $\mathrm{ab}^{-1}$. A range of heavy neutral lepton masses between the $Z$ boson and Higgs boson masses are studied. The $2\sigma$ significance reach for the joint branching ratio of $BR(H\to\nu N_d)\cdot BR(N_d\to lW)$ is about 0.1\%, nearly independent of the heavy neutral lepton masses, while the $5\sigma$ discovery is possible at a branching ratio of $0.3\%$. Interpreting these results in terms of constraints on the mixing parameters $|\varepsilon_{id}|^2$ between SM neutrinos and the heavy neutral lepton, it is expected to have a factor of 10 improvement from current constraints.